Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 57925 by maxmathsup by imad last updated on 14/Apr/19

solve y^(′′)  −xy =0  by using integr series.

$${solve}\:{y}^{''} \:−{xy}\:=\mathrm{0}\:\:{by}\:{using}\:{integr}\:{series}. \\ $$

Commented by maxmathsup by imad last updated on 18/Apr/19

let search develloppable at integr serie  let y =Σ_(n=0) ^∞  a_n x^n  ⇒  y^′ (x) =Σ_(n=1) ^∞  na_n x^(n−1)   and y^(′′) (x) =Σ_(n=2) ^∞  n(n−1)a_n x^(n−2)   (e) ⇒Σ_(n=2) ^∞  n(n−1)a_n x^(n−2)  −Σ_(n=0) ^∞  a_n x^(n+1)  =0 ⇒  Σ_(p=0) ^∞  (p+2)(p+1)a_(p+2)  x^p  −Σ_(p=1) ^∞  a_(p−1) x^p  =0 ⇒2a_2  +Σ_(p=1) ^∞ { (p+1)(p+2)a_(p+2) −a_(p−1) }x^p =0  ⇒a_2 =0   and  (p+1)(p+2)a_(p+2) −a_(p−1) =0   ∀ p≥1 ⇒a_(p+2) =(a_(p−1) /((p+1)(p+2)))  ∀p≥1  and a_2 =0 ⇒a_(2n+2) =(a_(2n−1) /((2n+1)(2n+2)))  and  a_(2n+3)  =(a_(2n) /((2n+2)(2n+3)))  y(x) =Σ_(n=0) ^∞  a_n x^n   = Σ_(n=0) ^∞  a_(2n) x^(2n)  +Σ_(n=0) ^∞  a_(2n+1) x^(2n+1)   =Σ_(n=2) ^∞    (a_(2n−3) /((2n−1)(2n+1))) x^(2n)   +a_0   +Σ_(n=1) ^∞    (a_(2n−2) /(2n(2n+1))) x^(2n+1)   also we can use that   (a_(2n+2) /a_(2n−1) ) =(1/((2n+1)(2n+2)))  ...be continued...

$${let}\:{search}\:{develloppable}\:{at}\:{integr}\:{serie}\:\:{let}\:{y}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {x}^{{n}} \:\Rightarrow \\ $$$${y}^{'} \left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{na}_{{n}} {x}^{{n}−\mathrm{1}} \:\:{and}\:{y}^{''} \left({x}\right)\:=\sum_{{n}=\mathrm{2}} ^{\infty} \:{n}\left({n}−\mathrm{1}\right){a}_{{n}} {x}^{{n}−\mathrm{2}} \\ $$$$\left({e}\right)\:\Rightarrow\sum_{{n}=\mathrm{2}} ^{\infty} \:{n}\left({n}−\mathrm{1}\right){a}_{{n}} {x}^{{n}−\mathrm{2}} \:−\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {x}^{{n}+\mathrm{1}} \:=\mathrm{0}\:\Rightarrow \\ $$$$\sum_{{p}=\mathrm{0}} ^{\infty} \:\left({p}+\mathrm{2}\right)\left({p}+\mathrm{1}\right){a}_{{p}+\mathrm{2}} \:{x}^{{p}} \:−\sum_{{p}=\mathrm{1}} ^{\infty} \:{a}_{{p}−\mathrm{1}} {x}^{{p}} \:=\mathrm{0}\:\Rightarrow\mathrm{2}{a}_{\mathrm{2}} \:+\sum_{{p}=\mathrm{1}} ^{\infty} \left\{\:\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right){a}_{{p}+\mathrm{2}} −{a}_{{p}−\mathrm{1}} \right\}{x}^{{p}} =\mathrm{0} \\ $$$$\Rightarrow{a}_{\mathrm{2}} =\mathrm{0}\:\:\:{and}\:\:\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right){a}_{{p}+\mathrm{2}} −{a}_{{p}−\mathrm{1}} =\mathrm{0}\:\:\:\forall\:{p}\geqslant\mathrm{1}\:\Rightarrow{a}_{{p}+\mathrm{2}} =\frac{{a}_{{p}−\mathrm{1}} }{\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)} \\ $$$$\forall{p}\geqslant\mathrm{1}\:\:{and}\:{a}_{\mathrm{2}} =\mathrm{0}\:\Rightarrow{a}_{\mathrm{2}{n}+\mathrm{2}} =\frac{{a}_{\mathrm{2}{n}−\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{2}\right)}\:\:{and}\:\:{a}_{\mathrm{2}{n}+\mathrm{3}} \:=\frac{{a}_{\mathrm{2}{n}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)} \\ $$$${y}\left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {x}^{{n}} \:\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{\mathrm{2}{n}} {x}^{\mathrm{2}{n}} \:+\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{\mathrm{2}{n}+\mathrm{1}} {x}^{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\:\frac{{a}_{\mathrm{2}{n}−\mathrm{3}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}\:{x}^{\mathrm{2}{n}} \:\:+{a}_{\mathrm{0}} \:\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{a}_{\mathrm{2}{n}−\mathrm{2}} }{\mathrm{2}{n}\left(\mathrm{2}{n}+\mathrm{1}\right)}\:{x}^{\mathrm{2}{n}+\mathrm{1}} \\ $$$${also}\:{we}\:{can}\:{use}\:{that}\:\:\:\frac{{a}_{\mathrm{2}{n}+\mathrm{2}} }{{a}_{\mathrm{2}{n}−\mathrm{1}} }\:=\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{2}\right)}\:\:...{be}\:{continued}... \\ $$

Answered by 121194 last updated on 14/Apr/19

y=Σ_(i=0) ^∞ a_i x^i   y′=Σ_(i=0) ^∞ a_i ix^(i−1) =Σ_(i=−1) ^∞ a_(i+1) (i+1)x^i =Σ_(i=0) ^∞ a_(i+1) (i+1)x^i   y′′=Σ_(i=0) ^∞ a_i i(i−1)x^(i−2) =Σ_(i=−2) ^∞ a_(i+2) (i+2)(i+1)x^i =Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^i   y′′−xy=0  Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^i −xΣ_(i=0) ^∞ a_i x^i =0  Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^i −Σ_(i=0) ^∞ a_i x^(i+1) =0  Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^i −Σ_(i=1) ^∞ a_(i−1) x^i =0  2a_2 =0⇒a_2 =0  (i+2)(i+1)a_(i+2) −a_(i−1) =0;i>0  a_(i+2) =(a_(i−1) /((i+2)(i+1)));i>0  a_i =(a_(i−3) /(i(i−1)));i>2  a_0 =c_1   a_1 =c_2   a_2 =0  a_3 =(a_0 /6)=(c_1 /6)  a_4 =(a_1 /(12))=(c_2 /(12))  a_5 =(a_2 /(20))=0  a_6 =(a_3 /(30))=(c_1 /(180))  ...  y=Σ_(i=0) ^∞ a_i x^i   =Σ_(i=0) ^∞ a_(3i) x^(3i) +Σ_(i=0) ^∞ a_(3i+1) x^(3i+1) +Σ_(i=0) ^∞ a_(3i+2) x^(3i+2)   =c_1 Σ_(i=0) ^∞ (x^(3i) /(f(i)))+c_2 Σ_(i=0) ^∞ (x^(3i+1) /(g(i)))  f(i)= { (1,(i=0)),(((f(i−1))/(3i(3i−1))),(i>0)) :}  g(i)= { (1,(i=0)),(((f(i−1))/(3i(3i+1))),(i>0)) :}

$${y}=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}} {x}^{{i}} \\ $$$${y}'=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}} {ix}^{{i}−\mathrm{1}} =\underset{{i}=−\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{1}} \left({i}+\mathrm{1}\right){x}^{{i}} =\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{1}} \left({i}+\mathrm{1}\right){x}^{{i}} \\ $$$${y}''=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}} {i}\left({i}−\mathrm{1}\right){x}^{{i}−\mathrm{2}} =\underset{{i}=−\mathrm{2}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{2}} \left({i}+\mathrm{2}\right)\left({i}+\mathrm{1}\right){x}^{{i}} =\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{2}} \left({i}+\mathrm{2}\right)\left({i}+\mathrm{1}\right){x}^{{i}} \\ $$$${y}''−{xy}=\mathrm{0} \\ $$$$\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{2}} \left({i}+\mathrm{2}\right)\left({i}+\mathrm{1}\right){x}^{{i}} −{x}\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}} {x}^{{i}} =\mathrm{0} \\ $$$$\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{2}} \left({i}+\mathrm{2}\right)\left({i}+\mathrm{1}\right){x}^{{i}} −\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}} {x}^{{i}+\mathrm{1}} =\mathrm{0} \\ $$$$\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{2}} \left({i}+\mathrm{2}\right)\left({i}+\mathrm{1}\right){x}^{{i}} −\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{i}−\mathrm{1}} {x}^{{i}} =\mathrm{0} \\ $$$$\mathrm{2}{a}_{\mathrm{2}} =\mathrm{0}\Rightarrow{a}_{\mathrm{2}} =\mathrm{0} \\ $$$$\left({i}+\mathrm{2}\right)\left({i}+\mathrm{1}\right){a}_{{i}+\mathrm{2}} −{a}_{{i}−\mathrm{1}} =\mathrm{0};{i}>\mathrm{0} \\ $$$${a}_{{i}+\mathrm{2}} =\frac{{a}_{{i}−\mathrm{1}} }{\left({i}+\mathrm{2}\right)\left({i}+\mathrm{1}\right)};{i}>\mathrm{0} \\ $$$${a}_{{i}} =\frac{{a}_{{i}−\mathrm{3}} }{{i}\left({i}−\mathrm{1}\right)};{i}>\mathrm{2} \\ $$$${a}_{\mathrm{0}} ={c}_{\mathrm{1}} \\ $$$${a}_{\mathrm{1}} ={c}_{\mathrm{2}} \\ $$$${a}_{\mathrm{2}} =\mathrm{0} \\ $$$${a}_{\mathrm{3}} =\frac{{a}_{\mathrm{0}} }{\mathrm{6}}=\frac{{c}_{\mathrm{1}} }{\mathrm{6}} \\ $$$${a}_{\mathrm{4}} =\frac{{a}_{\mathrm{1}} }{\mathrm{12}}=\frac{{c}_{\mathrm{2}} }{\mathrm{12}} \\ $$$${a}_{\mathrm{5}} =\frac{{a}_{\mathrm{2}} }{\mathrm{20}}=\mathrm{0} \\ $$$${a}_{\mathrm{6}} =\frac{{a}_{\mathrm{3}} }{\mathrm{30}}=\frac{{c}_{\mathrm{1}} }{\mathrm{180}} \\ $$$$... \\ $$$${y}=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}} {x}^{{i}} \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{\mathrm{3}{i}} {x}^{\mathrm{3}{i}} +\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{\mathrm{3}{i}+\mathrm{1}} {x}^{\mathrm{3}{i}+\mathrm{1}} +\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{\mathrm{3}{i}+\mathrm{2}} {x}^{\mathrm{3}{i}+\mathrm{2}} \\ $$$$={c}_{\mathrm{1}} \underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{3}{i}} }{{f}\left({i}\right)}+{c}_{\mathrm{2}} \underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{3}{i}+\mathrm{1}} }{{g}\left({i}\right)} \\ $$$${f}\left({i}\right)=\begin{cases}{\mathrm{1}}&{{i}=\mathrm{0}}\\{\frac{{f}\left({i}−\mathrm{1}\right)}{\mathrm{3}{i}\left(\mathrm{3}{i}−\mathrm{1}\right)}}&{{i}>\mathrm{0}}\end{cases} \\ $$$${g}\left({i}\right)=\begin{cases}{\mathrm{1}}&{{i}=\mathrm{0}}\\{\frac{{f}\left({i}−\mathrm{1}\right)}{\mathrm{3}{i}\left(\mathrm{3}{i}+\mathrm{1}\right)}}&{{i}>\mathrm{0}}\end{cases} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com