Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 58500 by Kunal12588 last updated on 24/Apr/19

change in simplest form :  tan^(−1) (((√(1+x^2 ))+(√(1−x^2 )))/((√(1+x^2 ))−(√(1−x^2 ))))

$${change}\:{in}\:{simplest}\:{form}\:: \\ $$$$\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$

Answered by MJS last updated on 24/Apr/19

(((√a)+(√b))/((√a)−(√b)))=((((√a)+(√b))^2 )/(((√a)−(√b))((√a)+(√b))))=((a+2(√(ab))+b)/(a−b))  ((1+x^2 +2(√((1+x^2 )(1−x^2 )))+1−x^2 )/(1+x^2 −(1−x^2 )))=  =((1+(√(1−x^4 )))/x^2 )  arctan ((1+(√(1−x^4 )))/x^2 ) =t  ⇒ x=±(√(sin 2t)) ⇒ t=((2nπ+arcsin x^2 )/2) ∨ t=(((2n+1)π−arcsin x^2 )/2)  testing values we get  arctan (((√(1+x^2 ))+(√(1−x^2 )))/((√(1+x^2 ))−(√(1−x^2 )))) =((π−arcsin x^2 )/2)

$$\frac{\sqrt{{a}}+\sqrt{{b}}}{\sqrt{{a}}−\sqrt{{b}}}=\frac{\left(\sqrt{{a}}+\sqrt{{b}}\right)^{\mathrm{2}} }{\left(\sqrt{{a}}−\sqrt{{b}}\right)\left(\sqrt{{a}}+\sqrt{{b}}\right)}=\frac{{a}+\mathrm{2}\sqrt{{ab}}+{b}}{{a}−{b}} \\ $$$$\frac{\mathrm{1}+{x}^{\mathrm{2}} +\mathrm{2}\sqrt{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}+\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} −\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}= \\ $$$$=\frac{\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}{{x}^{\mathrm{2}} } \\ $$$$\mathrm{arctan}\:\frac{\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}{{x}^{\mathrm{2}} }\:={t} \\ $$$$\Rightarrow\:{x}=\pm\sqrt{\mathrm{sin}\:\mathrm{2}{t}}\:\Rightarrow\:{t}=\frac{\mathrm{2}{n}\pi+\mathrm{arcsin}\:{x}^{\mathrm{2}} }{\mathrm{2}}\:\vee\:{t}=\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)\pi−\mathrm{arcsin}\:{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{testing}\:\mathrm{values}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{arctan}\:\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:=\frac{\pi−\mathrm{arcsin}\:{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$

Commented by Kunal12588 last updated on 24/Apr/19

thank you sir, I have also written an ans  pls check.

$${thank}\:{you}\:{sir},\:{I}\:{have}\:{also}\:{written}\:{an}\:{ans} \\ $$$${pls}\:{check}. \\ $$

Answered by Kunal12588 last updated on 24/Apr/19

tan^(−1) (((√(1+x^2 ))+(√(1−x^2 )))/((√(1+x^2 ))−(√(1−x^2 ))))  let x^2 =cos y  ⇒cos^(−1) x^2 =y  tan^(−1) (((√(1+cos y))+(√(1−cos y)))/((√(1+cos y))−(√(1−cos y))))  =tan^(−1) (((√2)cos(y/2)+(√2)sin(y/2))/((√2)cos(y/2)−(√2)sin(y/2)))  =tan^(−1) ((1+tan(y/2))/(1−tan(y/2)))  =tan^(−1) ((tan(π/4)+tan(y/2))/(1−tan(π/4)tan(y/2)))  =tan^(−1) (tan((π/4)+(y/2)))  =(π/4)+(y/2)  =(π/4)+(1/2)cos^(−1) x^2

$${tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$${let}\:{x}^{\mathrm{2}} ={cos}\:{y} \\ $$$$\Rightarrow{cos}^{−\mathrm{1}} {x}^{\mathrm{2}} ={y} \\ $$$${tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{1}+{cos}\:{y}}+\sqrt{\mathrm{1}−{cos}\:{y}}}{\sqrt{\mathrm{1}+{cos}\:{y}}−\sqrt{\mathrm{1}−{cos}\:{y}}} \\ $$$$={tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{2}}{cos}\frac{{y}}{\mathrm{2}}+\sqrt{\mathrm{2}}{sin}\frac{{y}}{\mathrm{2}}}{\sqrt{\mathrm{2}}{cos}\frac{{y}}{\mathrm{2}}−\sqrt{\mathrm{2}}{sin}\frac{{y}}{\mathrm{2}}} \\ $$$$={tan}^{−\mathrm{1}} \frac{\mathrm{1}+{tan}\frac{{y}}{\mathrm{2}}}{\mathrm{1}−{tan}\frac{{y}}{\mathrm{2}}} \\ $$$$={tan}^{−\mathrm{1}} \frac{{tan}\frac{\pi}{\mathrm{4}}+{tan}\frac{{y}}{\mathrm{2}}}{\mathrm{1}−{tan}\frac{\pi}{\mathrm{4}}{tan}\frac{{y}}{\mathrm{2}}} \\ $$$$={tan}^{−\mathrm{1}} \left({tan}\left(\frac{\pi}{\mathrm{4}}+\frac{{y}}{\mathrm{2}}\right)\right) \\ $$$$=\frac{\pi}{\mathrm{4}}+\frac{{y}}{\mathrm{2}} \\ $$$$=\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}{cos}^{−\mathrm{1}} {x}^{\mathrm{2}} \: \\ $$

Commented by MJS last updated on 24/Apr/19

good!  (π/4)+(1/2)arccos x^2  =(π/2)−(1/2)arcsin x^2

$$\mathrm{good}! \\ $$$$\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arccos}\:{x}^{\mathrm{2}} \:=\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arcsin}\:{x}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com