Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 59295 by pooja24 last updated on 07/May/19

Let A be3×3 matrix with eigen values  1,−1,0. Then determinant of I+A^(100 ) =??

$${Let}\:{A}\:{be}\mathrm{3}×\mathrm{3}\:{matrix}\:{with}\:{eigen}\:{values} \\ $$$$\mathrm{1},−\mathrm{1},\mathrm{0}.\:{Then}\:{determinant}\:{of}\:{I}+{A}^{\mathrm{100}\:} =?? \\ $$

Answered by alex041103 last updated on 10/May/19

basically  A=PDP^(−1)   where D is a diagonal matrix  ⇒A^(100) =PD^(100) P^(−1)   also I=PIP^(−1)   ⇒M=I+A^(100) =P(I+D^(100) )P^(−1)   Then det(M)=det(P)det(I+D^(100) )det(P^(−1) )=  =[det(P)det(P^(−1) )]det(I+D^(100) )=  =det(PP^(−1) )det(I+D^(100) )=  =det(I)det(I+D^(100) )=  =det(I+D^(100) )=det(M)  We define P as the matrix which gets   us from the normal system of coordinates to the  system of the coordinates which uses  the eigen vectors as basis vectors. Then  D is a diagonal matrix with the eigen  values in it.  ⇒D= [(0,0,0),(0,1,0),(0,0,(−1)) ]  ⇒D^(100) = [(0,0,0),(0,1,0),(0,0,1) ]  ⇒det(M)= determinant ((1,0,0),(0,2,0),(0,0,2))=4  ⇒det(I+A^(100) )=4

$${basically} \\ $$$${A}={PDP}^{−\mathrm{1}} \\ $$$${where}\:{D}\:{is}\:{a}\:{diagonal}\:{matrix} \\ $$$$\Rightarrow{A}^{\mathrm{100}} ={PD}^{\mathrm{100}} {P}^{−\mathrm{1}} \\ $$$${also}\:{I}={PIP}^{−\mathrm{1}} \\ $$$$\Rightarrow{M}={I}+{A}^{\mathrm{100}} ={P}\left({I}+{D}^{\mathrm{100}} \right){P}^{−\mathrm{1}} \\ $$$${Then}\:{det}\left({M}\right)={det}\left({P}\right){det}\left({I}+{D}^{\mathrm{100}} \right){det}\left({P}^{−\mathrm{1}} \right)= \\ $$$$=\left[{det}\left({P}\right){det}\left({P}^{−\mathrm{1}} \right)\right]{det}\left({I}+{D}^{\mathrm{100}} \right)= \\ $$$$={det}\left({PP}^{−\mathrm{1}} \right){det}\left({I}+{D}^{\mathrm{100}} \right)= \\ $$$$={det}\left({I}\right){det}\left({I}+{D}^{\mathrm{100}} \right)= \\ $$$$={det}\left({I}+{D}^{\mathrm{100}} \right)={det}\left({M}\right) \\ $$$${We}\:{define}\:{P}\:{as}\:{the}\:{matrix}\:{which}\:{gets}\: \\ $$$${us}\:{from}\:{the}\:{normal}\:{system}\:{of}\:{coordinates}\:{to}\:{the} \\ $$$${system}\:{of}\:{the}\:{coordinates}\:{which}\:{uses} \\ $$$${the}\:{eigen}\:{vectors}\:{as}\:{basis}\:{vectors}.\:{Then} \\ $$$${D}\:{is}\:{a}\:{diagonal}\:{matrix}\:{with}\:{the}\:{eigen} \\ $$$${values}\:{in}\:{it}. \\ $$$$\Rightarrow{D}=\begin{bmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{−\mathrm{1}}\end{bmatrix} \\ $$$$\Rightarrow{D}^{\mathrm{100}} =\begin{bmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\end{bmatrix} \\ $$$$\Rightarrow{det}\left({M}\right)=\begin{vmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{2}}\end{vmatrix}=\mathrm{4} \\ $$$$\Rightarrow{det}\left({I}+{A}^{\mathrm{100}} \right)=\mathrm{4} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com