Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 59637 by mathtype last updated on 12/May/19

lim_(x→∞) (1/x)∫_0 ^x ∣sin x∣

$$\underset{{x}\rightarrow\infty} {{lim}}\frac{\mathrm{1}}{{x}}\int_{\mathrm{0}} ^{{x}} \mid\mathrm{sin}\:{x}\mid \\ $$

Commented by Mr X pcx last updated on 13/May/19

there is a problem here let take x=nπ  and find lim_(n→+∞) (1/(nπ)) ∫_0 ^(nπ) ∣sint∣dt wehave  ∫_0 ^(nπ) ∣sint∣dt =Σ_(k=0) ^(n−1)  ∫_(kπ) ^()k+1)π) ∣sint∣dt  =_(t=kπ +u)     Σ_(k=0) ^(n−1)   ∫_0 ^π ∣(−1)^k sinu∣du  =Σ_(k=0) ^(n−1)  ∫_0 ^π  sinu du =Σ_(k=0) ^(n−1) [−cosu]_0 ^π   =2 Σ_(k=0) ^(n−1) )1) =2n ⇒  lim_(n→+∞)   (1/(nπ)) ∫_0 ^(nπ)  ∣sinx∣dx =(2/π) ...!

$${there}\:{is}\:{a}\:{problem}\:{here}\:{let}\:{take}\:{x}={n}\pi \\ $$$${and}\:{find}\:{lim}_{{n}\rightarrow+\infty} \frac{\mathrm{1}}{{n}\pi}\:\int_{\mathrm{0}} ^{{n}\pi} \mid{sint}\mid{dt}\:{wehave} \\ $$$$\int_{\mathrm{0}} ^{{n}\pi} \mid{sint}\mid{dt}\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\int_{{k}\pi} ^{\left.\right)\left.{k}+\mathrm{1}\right)\pi} \mid{sint}\mid{dt} \\ $$$$=_{{t}={k}\pi\:+{u}} \:\:\:\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\int_{\mathrm{0}} ^{\pi} \mid\left(−\mathrm{1}\right)^{{k}} {sinu}\mid{du} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\int_{\mathrm{0}} ^{\pi} \:{sinu}\:{du}\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left[−{cosu}\right]_{\mathrm{0}} ^{\pi} \\ $$$$\left.=\left.\mathrm{2}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \right)\mathrm{1}\right)\:=\mathrm{2}{n}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:\frac{\mathrm{1}}{{n}\pi}\:\int_{\mathrm{0}} ^{{n}\pi} \:\mid{sinx}\mid{dx}\:=\frac{\mathrm{2}}{\pi}\:...! \\ $$$$ \\ $$

Answered by tanmay last updated on 13/May/19

lim_(x→∞)  ((∫_0 ^x ∣sinx∣ dx)/x)  now ∫_0 ^x f(x)dx=∫_0 ^x f(t)dt    lim_(x→∞)  ((g(x))/x)  g(x)=∫_0 ^x ∣sint∣dt  (dg/dx)=∫_0 ^x ((∂∣sint∣)/∂x)dt+∣sinx∣×(dx/dx)  (dg/dx)=∣sinx∣  lim_(x→∞)   ((g(x))/x)  lim_(x→∞) ((g′(x))/1)  lim_(x→∞)  ∣sinx∣    1≥sinx≥−1  1≥∣sinx∣≥0    so lim_(x→∞)  ∣sinx∣   limit does not exist since ∣sinx∣ oscillate  between 0 and 1  am i correct...pls check

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\int_{\mathrm{0}} ^{{x}} \mid{sinx}\mid\:{dx}}{{x}} \\ $$$${now}\:\int_{\mathrm{0}} ^{{x}} {f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{{x}} {f}\left({t}\right){dt} \\ $$$$ \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{g}\left({x}\right)}{{x}} \\ $$$${g}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \mid{sint}\mid{dt} \\ $$$$\frac{{dg}}{{dx}}=\int_{\mathrm{0}} ^{{x}} \frac{\partial\mid{sint}\mid}{\partial{x}}{dt}+\mid{sinx}\mid×\frac{{dx}}{{dx}} \\ $$$$\frac{{dg}}{{dx}}=\mid{sinx}\mid \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{{g}\left({x}\right)}{{x}} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{g}'\left({x}\right)}{\mathrm{1}} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mid{sinx}\mid \\ $$$$\:\:\mathrm{1}\geqslant{sinx}\geqslant−\mathrm{1} \\ $$$$\mathrm{1}\geqslant\mid{sinx}\mid\geqslant\mathrm{0} \\ $$$$ \\ $$$${so}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mid{sinx}\mid\: \\ $$$${limit}\:{does}\:{not}\:{exist}\:{since}\:\mid{sinx}\mid\:{oscillate} \\ $$$${between}\:\mathrm{0}\:{and}\:\mathrm{1} \\ $$$${am}\:{i}\:{correct}...{pls}\:{check} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com