Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 59870 by ajfour last updated on 15/May/19

Commented by ajfour last updated on 15/May/19

Find minimum length of AB. A is on  an ellipse while B on shown parabola.

$$\mathrm{Find}\:\mathrm{minimum}\:\mathrm{length}\:\mathrm{of}\:\mathrm{AB}.\:\mathrm{A}\:\mathrm{is}\:\mathrm{on} \\ $$$$\mathrm{an}\:\mathrm{ellipse}\:\mathrm{while}\:\mathrm{B}\:\mathrm{on}\:\mathrm{shown}\:\mathrm{parabola}. \\ $$

Commented by MJS last updated on 15/May/19

am I right or wrong?  we need parallel tangents with 0<p, q<2a  with maximum distance between those  tangents

$$\mathrm{am}\:\mathrm{I}\:\mathrm{right}\:\mathrm{or}\:\mathrm{wrong}? \\ $$$$\mathrm{we}\:\mathrm{need}\:\mathrm{parallel}\:\mathrm{tangents}\:\mathrm{with}\:\mathrm{0}<{p},\:{q}<\mathrm{2}{a} \\ $$$$\mathrm{with}\:\mathrm{maximum}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{those} \\ $$$$\mathrm{tangents} \\ $$

Commented by mr W last updated on 15/May/19

you are right sir.  but: with minimum distance between...

$${you}\:{are}\:{right}\:{sir}. \\ $$$${but}:\:{with}\:{minimum}\:{distance}\:{between}... \\ $$

Commented by MJS last updated on 16/May/19

I tried this:  let a=1 [it′s just a scaling factor]  P∈par= ((p),((f_1 (p))) )  Q∈ell= ((q),((f_2 (q))) )  min. distance=min(∣PQ∣)=min(∣PQ∣^2 )  D=∣PQ∣^2 =(p^4 /(16))−(p^3 /2)+3p^2 −4p−2pq+((3q^2 )/4)+5−((p^2 /4)−p+2)(√(4−q^2 ))  (dD/dp)=(p^3 /4)−((3p^2 )/2)+6p−2q−4−((p/2)−1)(√(4−q^2 ))  ⇒  p^3 −6p^2 +2p(12−(√(4−q^2 )))−4(2(q+2)−(√(4−q^2 )))=0  p=t+2  t^3 +2(6−(√(4−q^2 )))t+8(2−q)=0  this has got 1 real and 2 complex solutions  ⇒  t_1 =u^(1/3) −v^(1/3)  ⇒ p_1 =2+u^(1/3) −v^(1/3)   u^(1/3) =((4q−8+(2/9)(√(6(36(q^2 −6q+14)+(q^2 −112(√(4−q^2 )))))))^(1/3)   v^(1/3) =((8−4q+(2/9)(√(6(36(q^2 −6q+14)+(q^2 −112(√(4−q^2 )))))))^(1/3)   now we′d have to insert p_1  in D and find the  minimum of (dD/dq)  I approximated with my TI−89 graphic  calculator and got this:  q=1.167275  p=1.281246  P= (((1.281246)),((1.129152)) )  Q= (((1.167275)),((.8120145)) )  D=.3369949

$$\mathrm{I}\:\mathrm{tried}\:\mathrm{this}: \\ $$$$\mathrm{let}\:{a}=\mathrm{1}\:\left[\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{a}\:\mathrm{scaling}\:\mathrm{factor}\right] \\ $$$${P}\in\mathrm{par}=\begin{pmatrix}{{p}}\\{{f}_{\mathrm{1}} \left({p}\right)}\end{pmatrix}\:\:{Q}\in\mathrm{ell}=\begin{pmatrix}{{q}}\\{{f}_{\mathrm{2}} \left({q}\right)}\end{pmatrix} \\ $$$$\mathrm{min}.\:\mathrm{distance}=\mathrm{min}\left(\mid{PQ}\mid\right)=\mathrm{min}\left(\mid{PQ}\mid^{\mathrm{2}} \right) \\ $$$${D}=\mid{PQ}\mid^{\mathrm{2}} =\frac{{p}^{\mathrm{4}} }{\mathrm{16}}−\frac{{p}^{\mathrm{3}} }{\mathrm{2}}+\mathrm{3}{p}^{\mathrm{2}} −\mathrm{4}{p}−\mathrm{2}{pq}+\frac{\mathrm{3}{q}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{5}−\left(\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{p}+\mathrm{2}\right)\sqrt{\mathrm{4}−{q}^{\mathrm{2}} } \\ $$$$\frac{{dD}}{{dp}}=\frac{{p}^{\mathrm{3}} }{\mathrm{4}}−\frac{\mathrm{3}{p}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{6}{p}−\mathrm{2}{q}−\mathrm{4}−\left(\frac{{p}}{\mathrm{2}}−\mathrm{1}\right)\sqrt{\mathrm{4}−{q}^{\mathrm{2}} } \\ $$$$\Rightarrow \\ $$$${p}^{\mathrm{3}} −\mathrm{6}{p}^{\mathrm{2}} +\mathrm{2}{p}\left(\mathrm{12}−\sqrt{\mathrm{4}−{q}^{\mathrm{2}} }\right)−\mathrm{4}\left(\mathrm{2}\left({q}+\mathrm{2}\right)−\sqrt{\mathrm{4}−{q}^{\mathrm{2}} }\right)=\mathrm{0} \\ $$$${p}={t}+\mathrm{2} \\ $$$${t}^{\mathrm{3}} +\mathrm{2}\left(\mathrm{6}−\sqrt{\mathrm{4}−{q}^{\mathrm{2}} }\right){t}+\mathrm{8}\left(\mathrm{2}−{q}\right)=\mathrm{0} \\ $$$$\mathrm{this}\:\mathrm{has}\:\mathrm{got}\:\mathrm{1}\:\mathrm{real}\:\mathrm{and}\:\mathrm{2}\:\mathrm{complex}\:\mathrm{solutions} \\ $$$$\Rightarrow \\ $$$${t}_{\mathrm{1}} ={u}^{\mathrm{1}/\mathrm{3}} −{v}^{\mathrm{1}/\mathrm{3}} \:\Rightarrow\:{p}_{\mathrm{1}} =\mathrm{2}+{u}^{\mathrm{1}/\mathrm{3}} −{v}^{\mathrm{1}/\mathrm{3}} \\ $$$${u}^{\mathrm{1}/\mathrm{3}} =\sqrt[{\mathrm{3}}]{\mathrm{4}{q}−\mathrm{8}+\frac{\mathrm{2}}{\mathrm{9}}\sqrt{\mathrm{6}\left(\mathrm{36}\left({q}^{\mathrm{2}} −\mathrm{6}{q}+\mathrm{14}\right)+\left({q}^{\mathrm{2}} −\mathrm{112}\sqrt{\mathrm{4}−{q}^{\mathrm{2}} }\right)\right.}} \\ $$$${v}^{\mathrm{1}/\mathrm{3}} =\sqrt[{\mathrm{3}}]{\mathrm{8}−\mathrm{4}{q}+\frac{\mathrm{2}}{\mathrm{9}}\sqrt{\mathrm{6}\left(\mathrm{36}\left({q}^{\mathrm{2}} −\mathrm{6}{q}+\mathrm{14}\right)+\left({q}^{\mathrm{2}} −\mathrm{112}\sqrt{\mathrm{4}−{q}^{\mathrm{2}} }\right)\right.}} \\ $$$$\mathrm{now}\:\mathrm{we}'\mathrm{d}\:\mathrm{have}\:\mathrm{to}\:\mathrm{insert}\:{p}_{\mathrm{1}} \:\mathrm{in}\:{D}\:\mathrm{and}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{minimum}\:\mathrm{of}\:\frac{{dD}}{{dq}} \\ $$$$\mathrm{I}\:\mathrm{approximated}\:\mathrm{with}\:\mathrm{my}\:\mathrm{TI}−\mathrm{89}\:\mathrm{graphic} \\ $$$$\mathrm{calculator}\:\mathrm{and}\:\mathrm{got}\:\mathrm{this}: \\ $$$${q}=\mathrm{1}.\mathrm{167275} \\ $$$${p}=\mathrm{1}.\mathrm{281246} \\ $$$${P}=\begin{pmatrix}{\mathrm{1}.\mathrm{281246}}\\{\mathrm{1}.\mathrm{129152}}\end{pmatrix}\:\:{Q}=\begin{pmatrix}{\mathrm{1}.\mathrm{167275}}\\{.\mathrm{8120145}}\end{pmatrix} \\ $$$${D}=.\mathrm{3369949} \\ $$

Commented by mr W last updated on 16/May/19

you got correct result sir!

$${you}\:{got}\:{correct}\:{result}\:{sir}! \\ $$

Commented by ajfour last updated on 16/May/19

awesome effort, thanks sir!

$$\mathrm{awesome}\:\mathrm{effort},\:\mathrm{thanks}\:\mathrm{sir}! \\ $$

Commented by ajfour last updated on 16/May/19

yes //tangents with a (local) maximum  distance.

$$\mathrm{yes}\://\mathrm{tangents}\:\mathrm{with}\:\mathrm{a}\:\left(\mathrm{local}\right)\:\mathrm{maximum} \\ $$$$\mathrm{distance}. \\ $$

Answered by mr W last updated on 16/May/19

method 1:  eqn. of parabola:  y=(((x−2a)^2 )/(4a))+a  eqn. of ellipse:  (x^2 /(4a^2 ))+(y^2 /a^2 )=1  A(p,c)  B(q,d)  (p^2 /(4a^2 ))+(c^2 /a^2 )=1  ⇒c=a(√(1−(1/4)((p/a))^2 ))  ⇒c=(a/2)(√(4−λ^2 ))  d=(1/(4a))(q−2a)^2 +a=a[1+(1/4)((q/a)−2)^2 ]  ⇒d=(a/4)[4+(μ−2)^2 ]  D=(AB)^2 =(p−q)^2 +(c−d)^2 =a^2 [(λ−μ)^2 +{(1/2)(√(4−λ^2 ))−1−(((μ−2)^2 )/4)}^2 ]=a^2 F(λ,μ)  F(λ,μ)=(λ−μ)^2 +{(1/2)(√(4−λ^2 ))−1−(((μ−2)^2 )/4)}^2   (∂F/∂λ)=2(λ−μ)+2{(1/2)(√(4−λ^2 ))−1−(((μ−2)^2 )/4)}(1/(4(√(4−λ^2 ))))×(−2λ)=0  ⇒4(λ−μ)(√(4−λ^2 ))=λ{(√(4−λ^2 ))−2−(((μ−2)^2 )/2)}   ...(i)  (∂F/∂μ)=−2(λ−μ)+2{(1/2)(√(4−λ^2 ))−1−(((μ−2)^2 )/4)}{−((2(μ−2))/4)}=0  ⇒4(λ−μ)=(2−μ){(√(4−λ^2 ))−2−(((μ−2)^2 )/2)}   ...(ii)  (i)/(ii):  (√(4−λ^2 ))=(λ/(2−μ))  ⇒μ=2−(λ/(√(4−λ^2 )))  put into (ii):  ⇒4(λ−2+(λ/(√(4−λ^2 ))))=(λ/(√(4−λ^2 ))){(√(4−λ^2 ))−2−(λ^2 /(2(4−λ^2 )))}   ⇒3λ+((6λ)/(√(4−λ^2 )))+(λ^3 /(2(4−λ^2 )(√(4−λ^2 ))))=8  ⇒λ=1.1672753  ⇒p=1.1672753 a  ⇒c=0.8120142 a  ....

$${method}\:\mathrm{1}: \\ $$$${eqn}.\:{of}\:{parabola}: \\ $$$${y}=\frac{\left({x}−\mathrm{2}{a}\right)^{\mathrm{2}} }{\mathrm{4}{a}}+{a} \\ $$$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{1} \\ $$$${A}\left({p},{c}\right) \\ $$$${B}\left({q},{d}\right) \\ $$$$\frac{{p}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }+\frac{{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow{c}={a}\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{p}}{{a}}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{c}=\frac{{a}}{\mathrm{2}}\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} } \\ $$$${d}=\frac{\mathrm{1}}{\mathrm{4}{a}}\left({q}−\mathrm{2}{a}\right)^{\mathrm{2}} +{a}={a}\left[\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{q}}{{a}}−\mathrm{2}\right)^{\mathrm{2}} \right] \\ $$$$\Rightarrow{d}=\frac{{a}}{\mathrm{4}}\left[\mathrm{4}+\left(\mu−\mathrm{2}\right)^{\mathrm{2}} \right] \\ $$$${D}=\left({AB}\right)^{\mathrm{2}} =\left({p}−{q}\right)^{\mathrm{2}} +\left({c}−{d}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} \left[\left(\lambda−\mu\right)^{\mathrm{2}} +\left\{\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }−\mathrm{1}−\frac{\left(\mu−\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}}\right\}^{\mathrm{2}} \right]={a}^{\mathrm{2}} {F}\left(\lambda,\mu\right) \\ $$$${F}\left(\lambda,\mu\right)=\left(\lambda−\mu\right)^{\mathrm{2}} +\left\{\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }−\mathrm{1}−\frac{\left(\mu−\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}}\right\}^{\mathrm{2}} \\ $$$$\frac{\partial{F}}{\partial\lambda}=\mathrm{2}\left(\lambda−\mu\right)+\mathrm{2}\left\{\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }−\mathrm{1}−\frac{\left(\mu−\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}}\right\}\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }}×\left(−\mathrm{2}\lambda\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{4}\left(\lambda−\mu\right)\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }=\lambda\left\{\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }−\mathrm{2}−\frac{\left(\mu−\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{2}}\right\}\:\:\:...\left({i}\right) \\ $$$$\frac{\partial{F}}{\partial\mu}=−\mathrm{2}\left(\lambda−\mu\right)+\mathrm{2}\left\{\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }−\mathrm{1}−\frac{\left(\mu−\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}}\right\}\left\{−\frac{\mathrm{2}\left(\mu−\mathrm{2}\right)}{\mathrm{4}}\right\}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{4}\left(\lambda−\mu\right)=\left(\mathrm{2}−\mu\right)\left\{\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }−\mathrm{2}−\frac{\left(\mu−\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{2}}\right\}\:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)/\left({ii}\right): \\ $$$$\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }=\frac{\lambda}{\mathrm{2}−\mu} \\ $$$$\Rightarrow\mu=\mathrm{2}−\frac{\lambda}{\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }} \\ $$$${put}\:{into}\:\left({ii}\right): \\ $$$$\Rightarrow\mathrm{4}\left(\lambda−\mathrm{2}+\frac{\lambda}{\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }}\right)=\frac{\lambda}{\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }}\left\{\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }−\mathrm{2}−\frac{\lambda^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{4}−\lambda^{\mathrm{2}} \right)}\right\}\: \\ $$$$\Rightarrow\mathrm{3}\lambda+\frac{\mathrm{6}\lambda}{\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }}+\frac{\lambda^{\mathrm{3}} }{\mathrm{2}\left(\mathrm{4}−\lambda^{\mathrm{2}} \right)\sqrt{\mathrm{4}−\lambda^{\mathrm{2}} }}=\mathrm{8} \\ $$$$\Rightarrow\lambda=\mathrm{1}.\mathrm{1672753} \\ $$$$\Rightarrow{p}=\mathrm{1}.\mathrm{1672753}\:{a} \\ $$$$\Rightarrow{c}=\mathrm{0}.\mathrm{8120142}\:{a} \\ $$$$.... \\ $$

Commented by ajfour last updated on 15/May/19

cant we do it with one variable Sir?

$$\mathrm{cant}\:\mathrm{we}\:\mathrm{do}\:\mathrm{it}\:\mathrm{with}\:\mathrm{one}\:\mathrm{variable}\:\mathrm{Sir}? \\ $$

Commented by mr W last updated on 16/May/19

yes sir.  i also tried to do with only one   variable: slope of tangents at A and B  and without using calculus.  both methods give the same result.

$${yes}\:{sir}.\:\:{i}\:{also}\:{tried}\:{to}\:{do}\:{with}\:{only}\:{one}\: \\ $$$${variable}:\:{slope}\:{of}\:{tangents}\:{at}\:{A}\:{and}\:{B} \\ $$$${and}\:{without}\:{using}\:{calculus}. \\ $$$${both}\:{methods}\:{give}\:{the}\:{same}\:{result}. \\ $$

Answered by mr W last updated on 16/May/19

method 2:  parabola:  y=(((x−2a)^2 )/(4a))+a  ellipse:  (x^2 /(4a^2 ))+(y^2 /a^2 )=1  point A(p,c)  point B(q,d)    slope of tangent at A is m:  ((2x)/(4a^2 ))+((2y)/a^2 )y′=0  (p/4)+cm=0  (p^2 /4)+c^2 =a^2   4m^2 c^2 +c^2 =a^2   ⇒c=(a/(√(1+4m^2 )))  ⇒p=−((4ma)/(√(1+4m^2 )))    slope of tangent at B is also m:  y′=((x−2a)/(2a))  m=(q/(2a))−1  ⇒q=2a(1+m)  ⇒d=(1+m^2 )a    slope of AB=m_1   m_1 =((d−c)/(q−p))=(((1+m^2 )a−(a/(√(1+4m^2 ))))/(2a(1+m)+((4ma)/(√(1+4m^2 )))))=(((1+m^2 )(√(1+4m^2 ))−1)/(2(1+m)(√(1+4m^2 ))+4m))  m_1 ×m=−1  (((1+m^2 )(√(1+4m^2 ))−1)/(2(1+m)(√(1+4m^2 ))+4m))×m=−1  ⇒(2+3m+m^3 )(√(1+4m^2 ))+3m=0  ⇒m=−0.3593765  ⇒p=1.1672753 a  ⇒c=0.8120142 a  .......

$${method}\:\mathrm{2}: \\ $$$${parabola}: \\ $$$${y}=\frac{\left({x}−\mathrm{2}{a}\right)^{\mathrm{2}} }{\mathrm{4}{a}}+{a} \\ $$$${ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{1} \\ $$$${point}\:{A}\left({p},{c}\right) \\ $$$${point}\:{B}\left({q},{d}\right) \\ $$$$ \\ $$$${slope}\:{of}\:{tangent}\:{at}\:{A}\:{is}\:{m}: \\ $$$$\frac{\mathrm{2}{x}}{\mathrm{4}{a}^{\mathrm{2}} }+\frac{\mathrm{2}{y}}{{a}^{\mathrm{2}} }{y}'=\mathrm{0} \\ $$$$\frac{{p}}{\mathrm{4}}+{cm}=\mathrm{0} \\ $$$$\frac{{p}^{\mathrm{2}} }{\mathrm{4}}+{c}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$$\mathrm{4}{m}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$$\Rightarrow{c}=\frac{{a}}{\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }} \\ $$$$\Rightarrow{p}=−\frac{\mathrm{4}{ma}}{\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }} \\ $$$$ \\ $$$${slope}\:{of}\:{tangent}\:{at}\:{B}\:{is}\:{also}\:{m}: \\ $$$${y}'=\frac{{x}−\mathrm{2}{a}}{\mathrm{2}{a}} \\ $$$${m}=\frac{{q}}{\mathrm{2}{a}}−\mathrm{1} \\ $$$$\Rightarrow{q}=\mathrm{2}{a}\left(\mathrm{1}+{m}\right) \\ $$$$\Rightarrow{d}=\left(\mathrm{1}+{m}^{\mathrm{2}} \right){a} \\ $$$$ \\ $$$${slope}\:{of}\:{AB}={m}_{\mathrm{1}} \\ $$$${m}_{\mathrm{1}} =\frac{{d}−{c}}{{q}−{p}}=\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right){a}−\frac{{a}}{\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }}}{\mathrm{2}{a}\left(\mathrm{1}+{m}\right)+\frac{\mathrm{4}{ma}}{\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }}}=\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }−\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+{m}\right)\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }+\mathrm{4}{m}} \\ $$$${m}_{\mathrm{1}} ×{m}=−\mathrm{1} \\ $$$$\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }−\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+{m}\right)\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }+\mathrm{4}{m}}×{m}=−\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{2}+\mathrm{3}{m}+{m}^{\mathrm{3}} \right)\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }+\mathrm{3}{m}=\mathrm{0} \\ $$$$\Rightarrow{m}=−\mathrm{0}.\mathrm{3593765} \\ $$$$\Rightarrow{p}=\mathrm{1}.\mathrm{1672753}\:{a} \\ $$$$\Rightarrow{c}=\mathrm{0}.\mathrm{8120142}\:{a} \\ $$$$....... \\ $$

Commented by ajfour last updated on 16/May/19

VERY NICE Sir! thanks.

$$\mathcal{VERY}\:\mathcal{NICE}\:{Sir}!\:{thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com