Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59882 by aliesam last updated on 15/May/19

∫_0 ^∞ ((sin(x))/(x(x^2 +1))) dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({x}\right)}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}\:{dx} \\ $$

Commented by maxmathsup by imad last updated on 15/May/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Commented by Mr X pcx last updated on 15/May/19

another way  we have  I =∫_0 ^∞  sinx((1/x) −(x/(x^2  +1)))dx  =∫_0 ^∞  ((sinx)/x) dx −∫_0 ^∞  ((xsinx)/(x^2  +1)) dx  =(π/2) −∫_0 ^∞   ((xsinx)/(x^2  +1)) dx but  ∫_0 ^∞   ((xsinx)/(x^2  +1)) dx =(1/2) ∫_(−∞) ^(+∞)   ((xsinx)/(x^2  +1)) dx  =(1/2) Im(∫_(−∞) ^(+∞)   ((xe^(ix) )/(x^2  +1))) let   w(z) =((z e^(iz) )/(z^2  +1))   the poles of w are i and  −i ⇒∫_(−∞) ^(+∞)  w(z)dz =2iπRes(w,i)  Res(w,i) =((i e^(−1) )/(2i)) =(e^(−1) /2) ⇒  ∫_(−∞) ^(+∞)  w(z)dz =2iπ (e^(−1) /2) =iπ e^(−1)  ⇒  ∫_0 ^∞   ((xsinx)/(x^2  +1)) dx =(π/2) e^(−1)  ⇒  ∫_0 ^∞    ((sinx)/(x(1+x^2 ))) dx =(π/2) −(π/2) e^(−1)   =(π/2)(1−(1/e)).

$${another}\:{way}\:\:{we}\:{have} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\infty} \:{sinx}\left(\frac{\mathrm{1}}{{x}}\:−\frac{{x}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{{x}}\:{dx}\:−\int_{\mathrm{0}} ^{\infty} \:\frac{{xsinx}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:{dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\:−\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xsinx}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:{dx}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xsinx}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:\frac{{xsinx}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:{Im}\left(\int_{−\infty} ^{+\infty} \:\:\frac{{xe}^{{ix}} }{{x}^{\mathrm{2}} \:+\mathrm{1}}\right)\:{let}\: \\ $$$${w}\left({z}\right)\:=\frac{{z}\:{e}^{{iz}} }{{z}^{\mathrm{2}} \:+\mathrm{1}}\:\:\:{the}\:{poles}\:{of}\:{w}\:{are}\:{i}\:{and} \\ $$$$−{i}\:\Rightarrow\int_{−\infty} ^{+\infty} \:{w}\left({z}\right){dz}\:=\mathrm{2}{i}\pi{Res}\left({w},{i}\right) \\ $$$${Res}\left({w},{i}\right)\:=\frac{{i}\:{e}^{−\mathrm{1}} }{\mathrm{2}{i}}\:=\frac{{e}^{−\mathrm{1}} }{\mathrm{2}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:{w}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{−\mathrm{1}} }{\mathrm{2}}\:={i}\pi\:{e}^{−\mathrm{1}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xsinx}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:{dx}\:=\frac{\pi}{\mathrm{2}}\:{e}^{−\mathrm{1}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{dx}\:=\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\mathrm{2}}\:{e}^{−\mathrm{1}} \\ $$$$=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{{e}}\right). \\ $$

Commented by aliesam last updated on 15/May/19

thank you sir

$${thank}\:{you}\:{sir}\: \\ $$

Commented by aliesam last updated on 15/May/19

thank you sir brilliant solution

$${thank}\:{you}\:{sir}\:{brilliant}\:{solution} \\ $$

Commented by malwaan last updated on 16/May/19

Whats the function Res ?

$${Whats}\:{the}\:{function}\:{Res}\:? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com