Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 59992 by ajfour last updated on 16/May/19

Commented by ajfour last updated on 16/May/19

Find l in terms of a and b.

$$\mathrm{Find}\:{l}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}. \\ $$

Answered by ajfour last updated on 16/May/19

  y=Ax^2    b=Aa^2   ⇒  A=(b/a^2 )    y=((bx^2 )/a^2 )  (dy/dx)=((2bx)/a^2 ) = tan θ   ⇒  dx=(a^2 /(2b))sec^2 θdθ     l =∫_0 ^(  a) (√(1+((4b^2 x^2 )/a^4 )))dx        = ((2b)/a^2 )∫_0 ^(  a) (√(((a^2 /(2b)))^2 +x^2 )) dx      = ((2b)/a^2 ){(x/2)(√(((a^2 /(2b)))^2 +x^2 ))+(1/2)((a^2 /(2b)))^2 ln ∣x+(√(((a^2 /(2b)))^2 +x^2 )) ∣}    l=(b/a)(√(((a^2 /(2b)))^2 +a^2 ))+(a^2 /(4b))ln (((a+(√(((a^2 /(2b)))^2 +a^2 )))/(a^2 /(2b))))     l= (a/2)[(√5)+(a/(2b))ln {((2b)/a)+(√(1+(((2b)/a))^2 )) }]   If a=b=1       l=((√5)/2)+(1/4)ln (2+(√5)) .

$$\:\:\mathrm{y}=\mathrm{Ax}^{\mathrm{2}} \\ $$$$\:\mathrm{b}=\mathrm{Aa}^{\mathrm{2}} \:\:\Rightarrow\:\:\mathrm{A}=\frac{\mathrm{b}}{\mathrm{a}^{\mathrm{2}} } \\ $$$$\:\:\mathrm{y}=\frac{\mathrm{bx}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{2bx}}{\mathrm{a}^{\mathrm{2}} }\:=\:\mathrm{tan}\:\theta\:\:\:\Rightarrow\:\:\mathrm{dx}=\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{2b}}\mathrm{sec}\:^{\mathrm{2}} \theta\mathrm{d}\theta \\ $$$$\:\:\:{l}\:=\int_{\mathrm{0}} ^{\:\:\mathrm{a}} \sqrt{\mathrm{1}+\frac{\mathrm{4b}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{4}} }}\mathrm{dx} \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{2b}}{\mathrm{a}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\:\:\mathrm{a}} \sqrt{\left(\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{2b}}\right)^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$$$\:\:\:\:=\:\frac{\mathrm{2b}}{\mathrm{a}^{\mathrm{2}} }\left\{\frac{\mathrm{x}}{\mathrm{2}}\sqrt{\left(\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{2b}}\right)^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{2b}}\right)^{\mathrm{2}} \mathrm{ln}\:\mid\mathrm{x}+\sqrt{\left(\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{2b}}\right)^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }\:\mid\right\} \\ $$$$\:\:\boldsymbol{{l}}=\frac{{b}}{{a}}\sqrt{\left(\frac{{a}^{\mathrm{2}} }{\mathrm{2}{b}}\right)^{\mathrm{2}} +{a}^{\mathrm{2}} }+\frac{{a}^{\mathrm{2}} }{\mathrm{4}{b}}\mathrm{ln}\:\left(\frac{{a}+\sqrt{\left(\frac{{a}^{\mathrm{2}} }{\mathrm{2}{b}}\right)^{\mathrm{2}} +{a}^{\mathrm{2}} }}{\frac{{a}^{\mathrm{2}} }{\mathrm{2}{b}}}\right)\: \\ $$$$\:\:\boldsymbol{{l}}=\:\frac{{a}}{\mathrm{2}}\left[\sqrt{\mathrm{5}}+\frac{{a}}{\mathrm{2}{b}}\mathrm{ln}\:\left\{\frac{\mathrm{2}{b}}{{a}}+\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{b}}{{a}}\right)^{\mathrm{2}} }\:\right\}\right] \\ $$$$\:\mathrm{If}\:\mathrm{a}=\mathrm{b}=\mathrm{1}\:\:\: \\ $$$$\:\:{l}=\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\:. \\ $$

Commented by mr W last updated on 17/May/19

rope as catenary:  y=k cosh (x/k)  b+k=k cosh (a/k)  ⇒(b/a)×(a/k)=cosh (a/k)−1  with λ=(b/a), μ=(a/k)  ⇒λμ=cosh μ−1  ...(i)  l=k sinh (a/k)=a((sinh (a/k))/(a/k))=a((sinh μ)/μ)  ⇒(l/a)=((sinh μ)/μ)   ...(ii)

$${rope}\:{as}\:{catenary}: \\ $$$${y}={k}\:\mathrm{cosh}\:\frac{{x}}{{k}} \\ $$$${b}+{k}={k}\:\mathrm{cosh}\:\frac{{a}}{{k}} \\ $$$$\Rightarrow\frac{{b}}{{a}}×\frac{{a}}{{k}}=\mathrm{cosh}\:\frac{{a}}{{k}}−\mathrm{1} \\ $$$${with}\:\lambda=\frac{{b}}{{a}},\:\mu=\frac{{a}}{{k}} \\ $$$$\Rightarrow\lambda\mu=\mathrm{cosh}\:\mu−\mathrm{1}\:\:...\left({i}\right) \\ $$$${l}={k}\:\mathrm{sinh}\:\frac{{a}}{{k}}={a}\frac{\mathrm{sinh}\:\frac{{a}}{{k}}}{\frac{{a}}{{k}}}={a}\frac{\mathrm{sinh}\:\mu}{\mu} \\ $$$$\Rightarrow\frac{{l}}{{a}}=\frac{\mathrm{sinh}\:\mu}{\mu}\:\:\:...\left({ii}\right) \\ $$

Commented by mr W last updated on 17/May/19

very nice sir!  if the rope has the form of catenary,  its length l can not be so explicitly   expressed in terms of a and b.

$${very}\:{nice}\:{sir}! \\ $$$${if}\:{the}\:{rope}\:{has}\:{the}\:{form}\:{of}\:{catenary}, \\ $$$${its}\:{length}\:{l}\:{can}\:{not}\:{be}\:{so}\:{explicitly}\: \\ $$$${expressed}\:{in}\:{terms}\:{of}\:{a}\:{and}\:{b}. \\ $$

Commented by mr W last updated on 17/May/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com