Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 60697 by ajfour last updated on 24/May/19

Commented by ajfour last updated on 24/May/19

How far can the slider slide if it  ejects mass at rate (dM/dt) = R , at a  relative speed u ?   ((M_0 /2)  of M_0  doesn′t burn and  assume μ sufficiently less)

$${How}\:{far}\:{can}\:{the}\:{slider}\:{slide}\:{if}\:{it} \\ $$$${ejects}\:{mass}\:{at}\:{rate}\:\frac{{dM}}{{dt}}\:=\:{R}\:,\:{at}\:{a} \\ $$$${relative}\:{speed}\:{u}\:?\: \\ $$$$\left(\frac{{M}_{\mathrm{0}} }{\mathrm{2}}\:\:{of}\:{M}_{\mathrm{0}} \:{doesn}'{t}\:{burn}\:{and}\right. \\ $$$$\left.{assume}\:\mu\:{sufficiently}\:{less}\right) \\ $$

Answered by mr W last updated on 25/May/19

phase 1: t=0 to t_1 , slider ejects material  (dM/dt)=−R  ⇒M=M_0 −Rt  −μMg−u(dM/dt)=Ma  −μMg+uR=Ma  ⇒a=((uR)/M)−μg  a=(dv/dt)=(dv/dM)×(dM/dt)=−R(dv/dM)  −R(dv/dM)=((uR)/M)−μg  −∫_0 ^( v) Rdv=∫_M_0  ^( M) (((uR)/M)−μg)dM  −Rv=[uR ln M−μgM]_M_0  ^M   ⇒v=−u ln (M/M_0 )−((μg)/R)(M_0 −M)  v=(ds/dt)=(ds/dM)×(dM/dt)=−R(ds/dM)  ⇒−R (ds/dM)=−u ln (M/M_0 )−((μg)/R)(M_0 −M)  ⇒R∫_0 ^( s) ds=∫_M_0  ^( M) {u ln (M/M_0 )+((μg)/R)(M_0 −M)}dM  ⇒Rs=uM_0  [(ln (M/M_0 )−1)(M/M_0 )]_M_0  ^M −((μg)/(2R))[(M_0 −M)^2 ]_M_0  ^M   ⇒s=((uM_0 )/R) [(ln (M/M_0 )−1)(M/M_0 )+1]−((μg)/(2R^2 ))(M_0 −M)^2   at t=t_1 =(M_0 /(2R)), M=(M_0 /2):  ⇒s_1 =[4(1−ln 2)uR −μgM_0 ](M_0 /(8R^2 ))  ⇒v_1 =u ln 2−((μgM_0 )/(2R))  M_1 =(M_0 /2)  phase 2: t=t_1  to t_2 , slider doesn′t ejects material  after this point it slides s_2  till it stops,  and its kinetic energy is completely  lost due to friction.  (1/2)M_1 v_1 ^2 =μM_1 gs_2   ⇒s_2 =(v_1 ^2 /(2μg))=(1/(2μg))(u ln 2−((μgM_0 )/(2R)))^2     total slide distance  l=s_1 +s_2   ⇒l=[4(1−ln 2)uR −μgM_0 ](M_0 /(8R^2 ))+(1/(2μg))(u ln 2−((μgM_0 )/(2R)))^2   ⇒l=(((ln 2)^2 u^2 )/(2μg))−(((2ln 2−1)uM_0 )/(2R))

$${phase}\:\mathrm{1}:\:{t}=\mathrm{0}\:{to}\:{t}_{\mathrm{1}} ,\:{slider}\:{ejects}\:{material} \\ $$$$\frac{{dM}}{{dt}}=−{R} \\ $$$$\Rightarrow{M}={M}_{\mathrm{0}} −{Rt} \\ $$$$−\mu{Mg}−{u}\frac{{dM}}{{dt}}={Ma} \\ $$$$−\mu{Mg}+{uR}={Ma} \\ $$$$\Rightarrow{a}=\frac{{uR}}{{M}}−\mu{g} \\ $$$${a}=\frac{{dv}}{{dt}}=\frac{{dv}}{{dM}}×\frac{{dM}}{{dt}}=−{R}\frac{{dv}}{{dM}} \\ $$$$−{R}\frac{{dv}}{{dM}}=\frac{{uR}}{{M}}−\mu{g} \\ $$$$−\int_{\mathrm{0}} ^{\:{v}} {Rdv}=\int_{{M}_{\mathrm{0}} } ^{\:{M}} \left(\frac{{uR}}{{M}}−\mu{g}\right){dM} \\ $$$$−{Rv}=\left[{uR}\:\mathrm{ln}\:{M}−\mu{gM}\right]_{{M}_{\mathrm{0}} } ^{{M}} \\ $$$$\Rightarrow{v}=−{u}\:\mathrm{ln}\:\frac{{M}}{{M}_{\mathrm{0}} }−\frac{\mu{g}}{{R}}\left({M}_{\mathrm{0}} −{M}\right) \\ $$$${v}=\frac{{ds}}{{dt}}=\frac{{ds}}{{dM}}×\frac{{dM}}{{dt}}=−{R}\frac{{ds}}{{dM}} \\ $$$$\Rightarrow−{R}\:\frac{{ds}}{{dM}}=−{u}\:\mathrm{ln}\:\frac{{M}}{{M}_{\mathrm{0}} }−\frac{\mu{g}}{{R}}\left({M}_{\mathrm{0}} −{M}\right) \\ $$$$\Rightarrow{R}\int_{\mathrm{0}} ^{\:{s}} {ds}=\int_{{M}_{\mathrm{0}} } ^{\:{M}} \left\{{u}\:\mathrm{ln}\:\frac{{M}}{{M}_{\mathrm{0}} }+\frac{\mu{g}}{{R}}\left({M}_{\mathrm{0}} −{M}\right)\right\}{dM} \\ $$$$\Rightarrow{Rs}={uM}_{\mathrm{0}} \:\left[\left(\mathrm{ln}\:\frac{{M}}{{M}_{\mathrm{0}} }−\mathrm{1}\right)\frac{{M}}{{M}_{\mathrm{0}} }\right]_{{M}_{\mathrm{0}} } ^{{M}} −\frac{\mu{g}}{\mathrm{2}{R}}\left[\left({M}_{\mathrm{0}} −{M}\right)^{\mathrm{2}} \right]_{{M}_{\mathrm{0}} } ^{{M}} \\ $$$$\Rightarrow{s}=\frac{{uM}_{\mathrm{0}} }{{R}}\:\left[\left(\mathrm{ln}\:\frac{{M}}{{M}_{\mathrm{0}} }−\mathrm{1}\right)\frac{{M}}{{M}_{\mathrm{0}} }+\mathrm{1}\right]−\frac{\mu{g}}{\mathrm{2}{R}^{\mathrm{2}} }\left({M}_{\mathrm{0}} −{M}\right)^{\mathrm{2}} \\ $$$${at}\:{t}={t}_{\mathrm{1}} =\frac{{M}_{\mathrm{0}} }{\mathrm{2}{R}},\:{M}=\frac{{M}_{\mathrm{0}} }{\mathrm{2}}: \\ $$$$\Rightarrow{s}_{\mathrm{1}} =\left[\mathrm{4}\left(\mathrm{1}−\mathrm{ln}\:\mathrm{2}\right){uR}\:−\mu{gM}_{\mathrm{0}} \right]\frac{{M}_{\mathrm{0}} }{\mathrm{8}{R}^{\mathrm{2}} } \\ $$$$\Rightarrow{v}_{\mathrm{1}} ={u}\:\mathrm{ln}\:\mathrm{2}−\frac{\mu{gM}_{\mathrm{0}} }{\mathrm{2}{R}} \\ $$$${M}_{\mathrm{1}} =\frac{{M}_{\mathrm{0}} }{\mathrm{2}} \\ $$$${phase}\:\mathrm{2}:\:{t}={t}_{\mathrm{1}} \:{to}\:{t}_{\mathrm{2}} ,\:{slider}\:{doesn}'{t}\:{ejects}\:{material} \\ $$$${after}\:{this}\:{point}\:{it}\:{slides}\:{s}_{\mathrm{2}} \:{till}\:{it}\:{stops}, \\ $$$${and}\:{its}\:{kinetic}\:{energy}\:{is}\:{completely} \\ $$$${lost}\:{due}\:{to}\:{friction}. \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{M}_{\mathrm{1}} {v}_{\mathrm{1}} ^{\mathrm{2}} =\mu{M}_{\mathrm{1}} {gs}_{\mathrm{2}} \\ $$$$\Rightarrow{s}_{\mathrm{2}} =\frac{{v}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}\mu{g}}=\frac{\mathrm{1}}{\mathrm{2}\mu{g}}\left({u}\:\mathrm{ln}\:\mathrm{2}−\frac{\mu{gM}_{\mathrm{0}} }{\mathrm{2}{R}}\right)^{\mathrm{2}} \\ $$$$ \\ $$$${total}\:{slide}\:{distance} \\ $$$${l}={s}_{\mathrm{1}} +{s}_{\mathrm{2}} \\ $$$$\Rightarrow{l}=\left[\mathrm{4}\left(\mathrm{1}−\mathrm{ln}\:\mathrm{2}\right){uR}\:−\mu{gM}_{\mathrm{0}} \right]\frac{{M}_{\mathrm{0}} }{\mathrm{8}{R}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}\mu{g}}\left({u}\:\mathrm{ln}\:\mathrm{2}−\frac{\mu{gM}_{\mathrm{0}} }{\mathrm{2}{R}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{l}=\frac{\left(\mathrm{ln}\:\mathrm{2}\right)^{\mathrm{2}} {u}^{\mathrm{2}} }{\mathrm{2}\mu{g}}−\frac{\left(\mathrm{2ln}\:\mathrm{2}−\mathrm{1}\right){uM}_{\mathrm{0}} }{\mathrm{2}{R}} \\ $$

Commented by ajfour last updated on 25/May/19

Very Good Sir, elaborate and wise!

$${Very}\:\mathcal{G}{ood}\:{Sir},\:{elaborate}\:{and}\:{wise}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com