Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 6135 by sanusihammed last updated on 15/Jun/16

Of all rectangular boxes without a lid and having a given   surface area . Find the one with maximum volume.

$${Of}\:{all}\:{rectangular}\:{boxes}\:{without}\:{a}\:{lid}\:{and}\:{having}\:{a}\:{given}\: \\ $$$${surface}\:{area}\:.\:{Find}\:{the}\:{one}\:{with}\:{maximum}\:{volume}. \\ $$

Commented by FilupSmith last updated on 15/Jun/16

Edge lengths a, b, c  Max volume when a=b=c  V=abc=a^3 =b^3 =c^3

$$\mathrm{Edge}\:\mathrm{lengths}\:{a},\:{b},\:{c} \\ $$$$\mathrm{Max}\:\mathrm{volume}\:\mathrm{when}\:{a}={b}={c} \\ $$$${V}={abc}={a}^{\mathrm{3}} ={b}^{\mathrm{3}} ={c}^{\mathrm{3}} \\ $$

Answered by Rasheed Soomro last updated on 16/Jun/16

Let a,b and c are dimenntions of   rectangular box.  The surface area =2(ab+bc+ca)  Let the lid has a and c dimentions  The area of lid surface=ac  A=Without lid surface area=2(ab+bc+ca)−ac                                                       =2ab+2bc+ca    Let there is a cubic box (without a lid ) of dimention d  having the surface area equal to that of above box.  A=Without lid surface area=d^2 +2d^2 +d^2 =5d^2   ∴             2ab+2bc+ca=5d^2                   d=(√((2ab+2bc+ca)/5))    Now let′s compare the volumes of above boxes  Volume of rectangular box=abc  Volume of cubic  box=d^3 =(((2ab+2bc+ca)/5))^(3/2)   (((2ab+2bc+ca)/5))^(3/2) ?  abc   ∀ a,b,c>0  Assumption:  (((2ab+2bc+ca)/5))^(3/2) ≥  abc   ∀ a,b,c>0  Can′t continue

$${Let}\:\boldsymbol{{a}},\boldsymbol{{b}}\:{and}\:\boldsymbol{{c}}\:{are}\:{dimenntions}\:{of}\: \\ $$$${rectangular}\:{box}. \\ $$$${The}\:{surface}\:{area}\:=\mathrm{2}\left(\boldsymbol{{ab}}+\boldsymbol{{bc}}+\boldsymbol{{ca}}\right) \\ $$$${Let}\:{the}\:{lid}\:{has}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{c}}\:{dimentions} \\ $$$${The}\:{area}\:{of}\:{lid}\:{surface}=\boldsymbol{{ac}} \\ $$$$\boldsymbol{{A}}={Without}\:{lid}\:{surface}\:{area}=\mathrm{2}\left(\boldsymbol{{ab}}+\boldsymbol{{bc}}+\boldsymbol{{ca}}\right)−\boldsymbol{{ac}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\boldsymbol{{ab}}+\mathrm{2}\boldsymbol{{bc}}+\boldsymbol{{ca}} \\ $$$$ \\ $$$${Let}\:{there}\:{is}\:{a}\:{cubic}\:{box}\:\left({without}\:{a}\:{lid}\:\right)\:{of}\:{dimention}\:\boldsymbol{{d}} \\ $$$${having}\:{the}\:{surface}\:{area}\:{equal}\:{to}\:{that}\:{of}\:{above}\:{box}. \\ $$$$\boldsymbol{{A}}={Without}\:{lid}\:{surface}\:{area}=\boldsymbol{{d}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{{d}}^{\mathrm{2}} +\boldsymbol{{d}}^{\mathrm{2}} =\mathrm{5}\boldsymbol{{d}}^{\mathrm{2}} \\ $$$$\therefore\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\boldsymbol{{ab}}+\mathrm{2}\boldsymbol{{bc}}+\boldsymbol{{ca}}=\mathrm{5}\boldsymbol{{d}}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{d}}=\sqrt{\frac{\mathrm{2}\boldsymbol{{ab}}+\mathrm{2}\boldsymbol{{bc}}+\boldsymbol{{ca}}}{\mathrm{5}}} \\ $$$$ \\ $$$${Now}\:{let}'{s}\:{compare}\:{the}\:{volumes}\:{of}\:{above}\:{boxes} \\ $$$${Volume}\:{of}\:{rectangular}\:{box}=\boldsymbol{{abc}} \\ $$$${Volume}\:{of}\:{cubic}\:\:{box}=\boldsymbol{{d}}^{\mathrm{3}} =\left(\frac{\mathrm{2}\boldsymbol{{ab}}+\mathrm{2}\boldsymbol{{bc}}+\boldsymbol{{ca}}}{\mathrm{5}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$\left(\frac{\mathrm{2}\boldsymbol{{ab}}+\mathrm{2}\boldsymbol{{bc}}+\boldsymbol{{ca}}}{\mathrm{5}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} ?\:\:\boldsymbol{{abc}}\:\:\:\forall\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}>\mathrm{0} \\ $$$${Assumption}: \\ $$$$\left(\frac{\mathrm{2}\boldsymbol{{ab}}+\mathrm{2}\boldsymbol{{bc}}+\boldsymbol{{ca}}}{\mathrm{5}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \geqslant\:\:\boldsymbol{{abc}}\:\:\:\forall\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}>\mathrm{0} \\ $$$${Can}'{t}\:{continue} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com