Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 61470 by Rasheed.Sindhi last updated on 03/Jun/19

Is there any other solution besides  {x=a,y=b} or {x=b,y=a} of the  following system of equations      x+y=a+b  ∧ x^7 +y^7 =a^7 +b^7   ?

$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{other}\:\mathrm{solution}\:\mathrm{besides} \\ $$$$\left\{\mathrm{x}=\mathrm{a},\mathrm{y}=\mathrm{b}\right\}\:\mathrm{or}\:\left\{\mathrm{x}=\mathrm{b},\mathrm{y}=\mathrm{a}\right\}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations} \\ $$$$\:\:\:\:\mathrm{x}+\mathrm{y}=\mathrm{a}+\mathrm{b}\:\:\wedge\:\mathrm{x}^{\mathrm{7}} +\mathrm{y}^{\mathrm{7}} =\mathrm{a}^{\mathrm{7}} +\mathrm{b}^{\mathrm{7}} \:\:? \\ $$$$ \\ $$

Answered by MJS last updated on 03/Jun/19

x+y=a+b ⇒ y=a+b−x  x^7 +y^7 −a^7 −b^7 =0       with y=a+b−x leads to  x^6 −3(a+b)x^5 +5(a+b)^2 x^4 −5(a+b)^3 x^3 +3(a+b)^4 x^2 −(a+b)^5 x+ab(a^2 +ab+b^2 )^2 =0  x=r+((a+b)/2)  r^6 +((5(a+b)^2 )/4)r^4 +((3(a+b)^4 )/(16))r^2 −(((a−b)^2 (9a^4 +8a^3 b+14a^2 b^2 +8ab^3 +9b^4 ))/(64))=0  r=±(√s)  s=t−((5(a+b)^2 )/(12))  t^3 −(((a+b)^4 )/3)t−(((2a^2 +ab+2b^2 )(a^4 −8a^3 b−9a^2 b^2 −8ab^3 +b^4 ))/(27))=0  we can always exactly solve this in C  depending on the values of a and b we need  Cardano′s or the trigonometric formula

$${x}+{y}={a}+{b}\:\Rightarrow\:{y}={a}+{b}−{x} \\ $$$${x}^{\mathrm{7}} +{y}^{\mathrm{7}} −{a}^{\mathrm{7}} −{b}^{\mathrm{7}} =\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{with}\:{y}={a}+{b}−{x}\:\mathrm{leads}\:\mathrm{to} \\ $$$${x}^{\mathrm{6}} −\mathrm{3}\left({a}+{b}\right){x}^{\mathrm{5}} +\mathrm{5}\left({a}+{b}\right)^{\mathrm{2}} {x}^{\mathrm{4}} −\mathrm{5}\left({a}+{b}\right)^{\mathrm{3}} {x}^{\mathrm{3}} +\mathrm{3}\left({a}+{b}\right)^{\mathrm{4}} {x}^{\mathrm{2}} −\left({a}+{b}\right)^{\mathrm{5}} {x}+{ab}\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{0} \\ $$$${x}={r}+\frac{{a}+{b}}{\mathrm{2}} \\ $$$${r}^{\mathrm{6}} +\frac{\mathrm{5}\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{4}}{r}^{\mathrm{4}} +\frac{\mathrm{3}\left({a}+{b}\right)^{\mathrm{4}} }{\mathrm{16}}{r}^{\mathrm{2}} −\frac{\left({a}−{b}\right)^{\mathrm{2}} \left(\mathrm{9}{a}^{\mathrm{4}} +\mathrm{8}{a}^{\mathrm{3}} {b}+\mathrm{14}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +\mathrm{8}{ab}^{\mathrm{3}} +\mathrm{9}{b}^{\mathrm{4}} \right)}{\mathrm{64}}=\mathrm{0} \\ $$$${r}=\pm\sqrt{{s}} \\ $$$${s}={t}−\frac{\mathrm{5}\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{12}} \\ $$$${t}^{\mathrm{3}} −\frac{\left({a}+{b}\right)^{\mathrm{4}} }{\mathrm{3}}{t}−\frac{\left(\mathrm{2}{a}^{\mathrm{2}} +{ab}+\mathrm{2}{b}^{\mathrm{2}} \right)\left({a}^{\mathrm{4}} −\mathrm{8}{a}^{\mathrm{3}} {b}−\mathrm{9}{a}^{\mathrm{2}} {b}^{\mathrm{2}} −\mathrm{8}{ab}^{\mathrm{3}} +{b}^{\mathrm{4}} \right)}{\mathrm{27}}=\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{always}\:\mathrm{exactly}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{in}\:\mathbb{C} \\ $$$$\mathrm{depending}\:\mathrm{on}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:{a}\:\mathrm{and}\:{b}\:\mathrm{we}\:\mathrm{need} \\ $$$$\mathrm{Cardano}'\mathrm{s}\:\mathrm{or}\:\mathrm{the}\:\mathrm{trigonometric}\:\mathrm{formula} \\ $$

Commented by Rasheed.Sindhi last updated on 03/Jun/19

Sir  how many real solutions if a,b∈R?

$$\mathrm{Sir}\:\:\mathrm{how}\:\mathrm{many}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{if}\:\mathrm{a},\mathrm{b}\in\mathbb{R}? \\ $$

Commented by MJS last updated on 03/Jun/19

it seems we always get 2 real solutions a, b  and 4 complex solutions if a, b ∈R ∧ a≠0∨b≠0

$$\mathrm{it}\:\mathrm{seems}\:\mathrm{we}\:\mathrm{always}\:\mathrm{get}\:\mathrm{2}\:\mathrm{real}\:\mathrm{solutions}\:{a},\:{b} \\ $$$$\mathrm{and}\:\mathrm{4}\:\mathrm{complex}\:\mathrm{solutions}\:\mathrm{if}\:{a},\:{b}\:\in\mathbb{R}\:\wedge\:{a}\neq\mathrm{0}\vee{b}\neq\mathrm{0} \\ $$

Commented by Rasheed.Sindhi last updated on 03/Jun/19

ThαnkS for an Xcelent answer!

$$\mathcal{T}{h}\alpha{nk}\mathcal{S}\:{for}\:{an}\:\mathcal{X}{celent}\:{answer}! \\ $$

Commented by Rasheed.Sindhi last updated on 03/Jun/19

Sir can we prove the above ?

$$\boldsymbol{\mathrm{Sir}}\:\mathrm{can}\:\mathrm{we}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{above}\:? \\ $$

Commented by MJS last updated on 03/Jun/19

of course it′s even easier!  x^6 −3(a+b)x^5 +5(a+b)^2 x^4 −5(a+b)^3 x^3 +3(a+b)^4 x^2 −(a+b)^5 x+ab(a^2 +ab+b^2 )^2 =0  this must be true for x=a∨x=b  ⇒  x^4 −2(a+b)x^3 +(3a^2 +5ab+3b^2 )x^2 −(2a^3 +5a^2 b+5ab^2 +2b^3 )x+(a^4 +2a^3 b+3a^2 b^2 +2ab^3 +b^4 )=0  x=r+((a+b)/2)  r^4 +((3a^2 +4ab+3b^2 )/2)r^2 +((9a^4 +8a^3 b+14a^2 b^2 +8ab^3 +9b^4 )/(16))=0  r=±(√s)  s=t−((3a^2 +4ab+3b^2 )/4)  t=±((√(ab(4a^2 +5ab+4b^2 )))/2)  ⇒ s=−((3a^2 +4ab+3b^2 )/4)±((√(ab(4a^2 +5ab+4b^2 )))/2)  ⇒ r=±(√(−((3a^2 +4ab+3b^2 )/4)±((√(ab(4a^2 +5ab+4b^2 )))/2)))  ⇒ x=((a+b)/2)±(√(−((3a^2 +4ab+3b^2 )/4)±((√(ab(4a^2 +5ab+4b^2 )))/2)))

$$\mathrm{of}\:\mathrm{course}\:\mathrm{it}'\mathrm{s}\:\mathrm{even}\:\mathrm{easier}! \\ $$$${x}^{\mathrm{6}} −\mathrm{3}\left({a}+{b}\right){x}^{\mathrm{5}} +\mathrm{5}\left({a}+{b}\right)^{\mathrm{2}} {x}^{\mathrm{4}} −\mathrm{5}\left({a}+{b}\right)^{\mathrm{3}} {x}^{\mathrm{3}} +\mathrm{3}\left({a}+{b}\right)^{\mathrm{4}} {x}^{\mathrm{2}} −\left({a}+{b}\right)^{\mathrm{5}} {x}+{ab}\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{this}\:\mathrm{must}\:\mathrm{be}\:\mathrm{true}\:\mathrm{for}\:{x}={a}\vee{x}={b} \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{4}} −\mathrm{2}\left({a}+{b}\right){x}^{\mathrm{3}} +\left(\mathrm{3}{a}^{\mathrm{2}} +\mathrm{5}{ab}+\mathrm{3}{b}^{\mathrm{2}} \right){x}^{\mathrm{2}} −\left(\mathrm{2}{a}^{\mathrm{3}} +\mathrm{5}{a}^{\mathrm{2}} {b}+\mathrm{5}{ab}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{3}} \right){x}+\left({a}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{3}} {b}+\mathrm{3}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +\mathrm{2}{ab}^{\mathrm{3}} +{b}^{\mathrm{4}} \right)=\mathrm{0} \\ $$$${x}={r}+\frac{{a}+{b}}{\mathrm{2}} \\ $$$${r}^{\mathrm{4}} +\frac{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{ab}+\mathrm{3}{b}^{\mathrm{2}} }{\mathrm{2}}{r}^{\mathrm{2}} +\frac{\mathrm{9}{a}^{\mathrm{4}} +\mathrm{8}{a}^{\mathrm{3}} {b}+\mathrm{14}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +\mathrm{8}{ab}^{\mathrm{3}} +\mathrm{9}{b}^{\mathrm{4}} }{\mathrm{16}}=\mathrm{0} \\ $$$${r}=\pm\sqrt{{s}} \\ $$$${s}={t}−\frac{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{ab}+\mathrm{3}{b}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${t}=\pm\frac{\sqrt{{ab}\left(\mathrm{4}{a}^{\mathrm{2}} +\mathrm{5}{ab}+\mathrm{4}{b}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$$\Rightarrow\:{s}=−\frac{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{ab}+\mathrm{3}{b}^{\mathrm{2}} }{\mathrm{4}}\pm\frac{\sqrt{{ab}\left(\mathrm{4}{a}^{\mathrm{2}} +\mathrm{5}{ab}+\mathrm{4}{b}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$$\Rightarrow\:{r}=\pm\sqrt{−\frac{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{ab}+\mathrm{3}{b}^{\mathrm{2}} }{\mathrm{4}}\pm\frac{\sqrt{{ab}\left(\mathrm{4}{a}^{\mathrm{2}} +\mathrm{5}{ab}+\mathrm{4}{b}^{\mathrm{2}} \right)}}{\mathrm{2}}} \\ $$$$\Rightarrow\:{x}=\frac{{a}+{b}}{\mathrm{2}}\pm\sqrt{−\frac{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{ab}+\mathrm{3}{b}^{\mathrm{2}} }{\mathrm{4}}\pm\frac{\sqrt{{ab}\left(\mathrm{4}{a}^{\mathrm{2}} +\mathrm{5}{ab}+\mathrm{4}{b}^{\mathrm{2}} \right)}}{\mathrm{2}}} \\ $$

Commented by MJS last updated on 03/Jun/19

we need to check if s≥0 is possible

$$\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{check}\:\mathrm{if}\:{s}\geqslant\mathrm{0}\:\mathrm{is}\:\mathrm{possible} \\ $$

Commented by MJS last updated on 03/Jun/19

a∈R∧b∈R ⇒ t∈R

$${a}\in\mathbb{R}\wedge{b}\in\mathbb{R}\:\Rightarrow\:{t}\in\mathbb{R} \\ $$

Commented by MJS last updated on 03/Jun/19

s=−((3a^2 +4ab+3b^2 )/4)±((√(ab(4a^2 +5ab+4b^2 )))/2)≥ ?  −((3a^2 +4ab+3b^2 )/4)±((√(ab(4a^2 +5ab+4b^2 )))/2)=0  (((3a^2 +4ab+3b^2 )/4))^2 =((ab(4a^2 +5ab+4b^2 ))/4)  ⇒  a^4 +(8/9)a^3 b+((14)/9)a^2 b^2 +(8/9)ab^3 +b^4 =0  (a^2 +((2(2−(√(13))))/9)ab+b^2 )(a^2 +((2(2+(√(13))))/9)ab+b^2 )=0  no real linear factors ⇒ no change of sign(s)  for a, b ∈R ⇒ s<0 ⇒ x∉R except x=a∨x=b

$${s}=−\frac{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{ab}+\mathrm{3}{b}^{\mathrm{2}} }{\mathrm{4}}\pm\frac{\sqrt{{ab}\left(\mathrm{4}{a}^{\mathrm{2}} +\mathrm{5}{ab}+\mathrm{4}{b}^{\mathrm{2}} \right)}}{\mathrm{2}}\geqslant\:? \\ $$$$−\frac{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{ab}+\mathrm{3}{b}^{\mathrm{2}} }{\mathrm{4}}\pm\frac{\sqrt{{ab}\left(\mathrm{4}{a}^{\mathrm{2}} +\mathrm{5}{ab}+\mathrm{4}{b}^{\mathrm{2}} \right)}}{\mathrm{2}}=\mathrm{0} \\ $$$$\left(\frac{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{ab}+\mathrm{3}{b}^{\mathrm{2}} }{\mathrm{4}}\right)^{\mathrm{2}} =\frac{{ab}\left(\mathrm{4}{a}^{\mathrm{2}} +\mathrm{5}{ab}+\mathrm{4}{b}^{\mathrm{2}} \right)}{\mathrm{4}} \\ $$$$\Rightarrow \\ $$$${a}^{\mathrm{4}} +\frac{\mathrm{8}}{\mathrm{9}}{a}^{\mathrm{3}} {b}+\frac{\mathrm{14}}{\mathrm{9}}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +\frac{\mathrm{8}}{\mathrm{9}}{ab}^{\mathrm{3}} +{b}^{\mathrm{4}} =\mathrm{0} \\ $$$$\left({a}^{\mathrm{2}} +\frac{\mathrm{2}\left(\mathrm{2}−\sqrt{\mathrm{13}}\right)}{\mathrm{9}}{ab}+{b}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} +\frac{\mathrm{2}\left(\mathrm{2}+\sqrt{\mathrm{13}}\right)}{\mathrm{9}}{ab}+{b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\mathrm{no}\:\mathrm{real}\:\mathrm{linear}\:\mathrm{factors}\:\Rightarrow\:\mathrm{no}\:\mathrm{change}\:\mathrm{of}\:\mathrm{sign}\left({s}\right) \\ $$$$\mathrm{for}\:{a},\:{b}\:\in\mathbb{R}\:\Rightarrow\:{s}<\mathrm{0}\:\Rightarrow\:{x}\notin\mathbb{R}\:\mathrm{except}\:{x}={a}\vee{x}={b} \\ $$

Commented by Rasheed.Sindhi last updated on 03/Jun/19

ThαnkS a lot Sir!  Actually your proof is required to  me for solving Q#61273.  Thanks again sir!

$$\mathcal{T}{h}\alpha{nk}\mathcal{S}\:{a}\:{lot}\:{Sir}! \\ $$$$\mathrm{Actually}\:\mathrm{your}\:\mathrm{proof}\:\mathrm{is}\:\mathrm{required}\:\mathrm{to} \\ $$$$\mathrm{me}\:\mathrm{for}\:\mathrm{solving}\:\mathrm{Q}#\mathrm{61273}. \\ $$$$\mathrm{Thanks}\:\mathrm{again}\:\mathrm{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com