Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 61530 by maxmathsup by imad last updated on 04/Jun/19

let U_n =∫_0 ^∞     (x^(−2n) /(1+x^4 )) dx   with n integr natural and   n≥1  1) calculate U_n  interms of n  2) find lim_(n→+∞)  n^2  U_n   3) study the serie Σ U_n

$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{−\mathrm{2}{n}} }{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:\:\:{with}\:{n}\:{integr}\:{natural}\:{and}\:\:\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{n}^{\mathrm{2}} \:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$

Commented by maxmathsup by imad last updated on 04/Jun/19

1) changement x^4 =t give x =t^(1/4)  ⇒U_n =∫_0 ^∞     (((t^(1/4) )^((−2)/n)    )/(1+t)) (1/4)t^((1/4)−1) dt  =(1/4)∫_0 ^∞    (t^(−(1/(2n))+(1/4)−1) /(1+t)) dt =(1/4) ∫_0 ^∞   (t^((1/4)−(1/(2n)) −1) /(1+t))dt   let  a=(1/4)−(1/(2n)) ⇒a =((2n−4)/(8n)) =((n−2)/(4n))>0  for n>2  and a−1 =((n−2)/(4n)) −1 =((n−2−4n)/(4n)) =((−3n−2)/(4n)) <0 ⇒0<a<1 ⇒  U_n = (1/4) (π/(sin(πa))) =(π/(4sin(π((1/4)−(1/(2n)))))) =(π/(4 sin((π/4)−(π/(2n)))))

$$\left.\mathrm{1}\right)\:{changement}\:{x}^{\mathrm{4}} ={t}\:{give}\:{x}\:={t}^{\frac{\mathrm{1}}{\mathrm{4}}} \:\Rightarrow{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left({t}^{\frac{\mathrm{1}}{\mathrm{4}}} \right)^{\frac{−\mathrm{2}}{{n}}} \:\:\:}{\mathrm{1}+{t}}\:\frac{\mathrm{1}}{\mathrm{4}}{t}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{−\frac{\mathrm{1}}{\mathrm{2}{n}}+\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} }{\mathrm{1}+{t}}\:{dt}\:=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}{n}}\:−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:\:{let}\:\:{a}=\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}{n}}\:\Rightarrow{a}\:=\frac{\mathrm{2}{n}−\mathrm{4}}{\mathrm{8}{n}}\:=\frac{{n}−\mathrm{2}}{\mathrm{4}{n}}>\mathrm{0} \\ $$$${for}\:{n}>\mathrm{2}\:\:{and}\:{a}−\mathrm{1}\:=\frac{{n}−\mathrm{2}}{\mathrm{4}{n}}\:−\mathrm{1}\:=\frac{{n}−\mathrm{2}−\mathrm{4}{n}}{\mathrm{4}{n}}\:=\frac{−\mathrm{3}{n}−\mathrm{2}}{\mathrm{4}{n}}\:<\mathrm{0}\:\Rightarrow\mathrm{0}<{a}<\mathrm{1}\:\Rightarrow \\ $$$${U}_{{n}} =\:\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\pi}{{sin}\left(\pi{a}\right)}\:=\frac{\pi}{\mathrm{4}{sin}\left(\pi\left(\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}{n}}\right)\right)}\:=\frac{\pi}{\mathrm{4}\:{sin}\left(\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{2}{n}}\right)} \\ $$

Commented by maxmathsup by imad last updated on 04/Jun/19

forgive U_n = ∫_0 ^∞     (x^(−(2/n)) /(1+x^4 )) dx with n≥3

$${forgive}\:{U}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{−\frac{\mathrm{2}}{{n}}} }{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:{with}\:{n}\geqslant\mathrm{3} \\ $$

Commented by maxmathsup by imad last updated on 04/Jun/19

i have used  the result ∫_0 ^∞   (t^(a−1) /(1+t))dt =(π/(sin(πa)))  with 0<a<1

$${i}\:{have}\:{used}\:\:{the}\:{result}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:=\frac{\pi}{{sin}\left(\pi{a}\right)}\:\:{with}\:\mathrm{0}<{a}<\mathrm{1} \\ $$

Commented by maxmathsup by imad last updated on 04/Jun/19

2) sin((π/4)−(π/(2n))) =sin((π/4))cos((π/(2n)))−cos((π/4))sin((π/(2n)))=((√2)/2)(cos((π/(2n)))−sin((π/(2n)))) ⇒  cos((π/(2n)))∼1−((((π/(2n)))^2 )/2) =1−(π^2 /(8n^2 ))    ,  sin((π/(2n)))∼ (π/(2n)) ⇒  U_n ∼  (π/(2(√2){1−(π^2 /(8n^2 ))−(π/(2n))})) =(1/(2(√2){ (1/π)−(π/(8n^2 )) −(1/(2n))})) ⇒n^2  U_n ∼ (n^2 /(2(√2){(1/π)−(π/(8n^2 ))−(1/(2n))}))  lim_(n→+∞)   ((1/π) −(π/(8n^2 )) (1/(2n))) =(1/π) ⇒lim_(n→+∞) n^2  U_n =+∞

$$\left.\mathrm{2}\right)\:{sin}\left(\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{2}{n}}\right)\:={sin}\left(\frac{\pi}{\mathrm{4}}\right){cos}\left(\frac{\pi}{\mathrm{2}{n}}\right)−{cos}\left(\frac{\pi}{\mathrm{4}}\right){sin}\left(\frac{\pi}{\mathrm{2}{n}}\right)=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left({cos}\left(\frac{\pi}{\mathrm{2}{n}}\right)−{sin}\left(\frac{\pi}{\mathrm{2}{n}}\right)\right)\:\Rightarrow \\ $$$${cos}\left(\frac{\pi}{\mathrm{2}{n}}\right)\sim\mathrm{1}−\frac{\left(\frac{\pi}{\mathrm{2}{n}}\right)^{\mathrm{2}} }{\mathrm{2}}\:=\mathrm{1}−\frac{\pi^{\mathrm{2}} }{\mathrm{8}{n}^{\mathrm{2}} }\:\:\:\:,\:\:{sin}\left(\frac{\pi}{\mathrm{2}{n}}\right)\sim\:\frac{\pi}{\mathrm{2}{n}}\:\Rightarrow \\ $$$${U}_{{n}} \sim\:\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}\left\{\mathrm{1}−\frac{\pi^{\mathrm{2}} }{\mathrm{8}{n}^{\mathrm{2}} }−\frac{\pi}{\mathrm{2}{n}}\right\}}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}\left\{\:\frac{\mathrm{1}}{\pi}−\frac{\pi}{\mathrm{8}{n}^{\mathrm{2}} }\:−\frac{\mathrm{1}}{\mathrm{2}{n}}\right\}}\:\Rightarrow{n}^{\mathrm{2}} \:{U}_{{n}} \sim\:\frac{{n}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{2}}\left\{\frac{\mathrm{1}}{\pi}−\frac{\pi}{\mathrm{8}{n}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}{n}}\right\}} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:\left(\frac{\mathrm{1}}{\pi}\:−\frac{\pi}{\mathrm{8}{n}^{\mathrm{2}} }\:\frac{\mathrm{1}}{\mathrm{2}{n}}\right)\:=\frac{\mathrm{1}}{\pi}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} {n}^{\mathrm{2}} \:{U}_{{n}} =+\infty \\ $$

Commented by maxmathsup by imad last updated on 04/Jun/19

3) we  lim_(n→∞) U_n =(π/(2(√2))) ≠0 ⇒ Σ U_n  diverges .

$$\left.\mathrm{3}\right)\:{we}\:\:{lim}_{{n}\rightarrow\infty} {U}_{{n}} =\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}\:\neq\mathrm{0}\:\Rightarrow\:\Sigma\:{U}_{{n}} \:{diverges}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com