Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 6247 by Yozzii last updated on 20/Jun/16

Show that, ∀x∈R, the sequence {f(n)}_0 ^∞   defined by f(0)=cosx, f(1)=sin(cosx) and  f(n)= { ((sin(cos(f(n−2)))  if n≥3 is odd)),((cos(sin(f(n−2)))  if n≥2 is even,)) :}  converges to a limit l∈(0.6,0.7).  If you can, determine the exact value  of l.

$${Show}\:{that},\:\forall{x}\in\mathbb{R},\:{the}\:{sequence}\:\left\{{f}\left({n}\right)\right\}_{\mathrm{0}} ^{\infty} \\ $$$${defined}\:{by}\:{f}\left(\mathrm{0}\right)={cosx},\:{f}\left(\mathrm{1}\right)={sin}\left({cosx}\right)\:{and} \\ $$$${f}\left({n}\right)=\begin{cases}{{sin}\left({cos}\left({f}\left({n}−\mathrm{2}\right)\right)\right)\:\:{if}\:{n}\geqslant\mathrm{3}\:{is}\:{odd}}\\{{cos}\left({sin}\left({f}\left({n}−\mathrm{2}\right)\right)\right)\:\:{if}\:{n}\geqslant\mathrm{2}\:{is}\:{even},}\end{cases} \\ $$$${converges}\:{to}\:{a}\:{limit}\:{l}\in\left(\mathrm{0}.\mathrm{6},\mathrm{0}.\mathrm{7}\right). \\ $$$${If}\:{you}\:{can},\:{determine}\:{the}\:{exact}\:{value} \\ $$$${of}\:{l}. \\ $$

Commented by Yozzii last updated on 20/Jun/16

f(0)=cosx  f(1)=sin(cosx)  f(2)=cos(sin(cosx))  f(3)=sin(cos(sin(cosx)))  f(4)=cos(sin(cos(sin(cosx))))  f(5)=sin(cos(sin(cos(sin(cosx)))))  …  lim_(n→∞) f(n)=?  Graphically, the curves f_n (x) flatten  to the line y≈0.695 for sufficiently  large n. I am yet to figure out how  to show this behaviour formally.

$${f}\left(\mathrm{0}\right)={cosx} \\ $$$${f}\left(\mathrm{1}\right)={sin}\left({cosx}\right) \\ $$$${f}\left(\mathrm{2}\right)={cos}\left({sin}\left({cosx}\right)\right) \\ $$$${f}\left(\mathrm{3}\right)={sin}\left({cos}\left({sin}\left({cosx}\right)\right)\right) \\ $$$${f}\left(\mathrm{4}\right)={cos}\left({sin}\left({cos}\left({sin}\left({cosx}\right)\right)\right)\right) \\ $$$${f}\left(\mathrm{5}\right)={sin}\left({cos}\left({sin}\left({cos}\left({sin}\left({cosx}\right)\right)\right)\right)\right) \\ $$$$\ldots \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{f}\left({n}\right)=? \\ $$$${Graphically},\:{the}\:{curves}\:{f}_{{n}} \left({x}\right)\:{flatten} \\ $$$${to}\:{the}\:{line}\:{y}\approx\mathrm{0}.\mathrm{695}\:{for}\:{sufficiently} \\ $$$${large}\:{n}.\:{I}\:{am}\:{yet}\:{to}\:{figure}\:{out}\:{how} \\ $$$${to}\:{show}\:{this}\:{behaviour}\:{formally}. \\ $$

Commented by prakash jain last updated on 20/Jun/16

The value will become constant and take  value u if for some u  sin (cos u)=u  cos (sin u)=u  Then the value will be a constant.  However  sin (cos x)=x⇒x=.695  cos (sin x)=x⇒x=.768  Also for cos (.695)=.768  So the graph should show 2 lines  .695 and .768

$$\mathrm{The}\:\mathrm{value}\:\mathrm{will}\:\mathrm{become}\:\mathrm{constant}\:\mathrm{and}\:\mathrm{take} \\ $$$$\mathrm{value}\:{u}\:\mathrm{if}\:\mathrm{for}\:\mathrm{some}\:{u} \\ $$$$\mathrm{sin}\:\left(\mathrm{cos}\:{u}\right)={u} \\ $$$$\mathrm{cos}\:\left(\mathrm{sin}\:{u}\right)={u} \\ $$$$\mathrm{Then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{will}\:\mathrm{be}\:\mathrm{a}\:\mathrm{constant}. \\ $$$$\mathrm{However} \\ $$$$\mathrm{sin}\:\left(\mathrm{cos}\:{x}\right)={x}\Rightarrow{x}=.\mathrm{695} \\ $$$$\mathrm{cos}\:\left(\mathrm{sin}\:{x}\right)={x}\Rightarrow{x}=.\mathrm{768} \\ $$$$\mathrm{Also}\:\mathrm{for}\:\mathrm{cos}\:\left(.\mathrm{695}\right)=.\mathrm{768} \\ $$$$\mathrm{So}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{should}\:\mathrm{show}\:\mathrm{2}\:\mathrm{lines} \\ $$$$.\mathrm{695}\:\mathrm{and}\:.\mathrm{768} \\ $$

Commented by Yozzii last updated on 20/Jun/16

The result of having two values of the limit   u from the two recurrence formulae   indicates that no limit exists?

$${The}\:{result}\:{of}\:{having}\:{two}\:{values}\:{of}\:{the}\:{limit}\: \\ $$$${u}\:{from}\:{the}\:{two}\:{recurrence}\:{formulae}\: \\ $$$${indicates}\:{that}\:{no}\:{limit}\:{exists}? \\ $$

Commented by Yozzii last updated on 21/Jun/16

u=sin(cosu)  u=cos(sinu)  ⇒2u=sin(cosu)+cos(sinu)   u turns out to be approximately 0.731  according to this equation.  −−−−−−−−−−−−−−−−−−−−−−−−  sin^(−1) u=cosu  cos^(−1) u=sinu  ⇒(sin^(−1) u)^2 +(cos^(−1) u)^2 =1   (∗)  Wolfram gives complex solutions of u  for (∗).  sin^(−1) u=0.5π−cos^(−1) u  j=cos^(−1) u⇒ (0.5π−j)^2 +j^2 =1  2j^2 −πj+0.25π^2 −1=0  j=((π±(√(π^2 −4(2)((π^2 /4)−1))))/4)  j=((π±(√(−π^2 +8)))/4)=((π±i(√(π^2 −8)))/4)  ∴ u=cos(((π±i(√(π^2 −8)))/4))

$${u}={sin}\left({cosu}\right) \\ $$$${u}={cos}\left({sinu}\right) \\ $$$$\Rightarrow\mathrm{2}{u}={sin}\left({cosu}\right)+{cos}\left({sinu}\right)\: \\ $$$${u}\:{turns}\:{out}\:{to}\:{be}\:{approximately}\:\mathrm{0}.\mathrm{731} \\ $$$${according}\:{to}\:{this}\:{equation}. \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${sin}^{−\mathrm{1}} {u}={cosu} \\ $$$${cos}^{−\mathrm{1}} {u}={sinu} \\ $$$$\Rightarrow\left({sin}^{−\mathrm{1}} {u}\right)^{\mathrm{2}} +\left({cos}^{−\mathrm{1}} {u}\right)^{\mathrm{2}} =\mathrm{1}\:\:\:\left(\ast\right) \\ $$$${Wolfram}\:{gives}\:{complex}\:{solutions}\:{of}\:{u} \\ $$$${for}\:\left(\ast\right). \\ $$$${sin}^{−\mathrm{1}} {u}=\mathrm{0}.\mathrm{5}\pi−{cos}^{−\mathrm{1}} {u} \\ $$$${j}={cos}^{−\mathrm{1}} {u}\Rightarrow\:\left(\mathrm{0}.\mathrm{5}\pi−{j}\right)^{\mathrm{2}} +{j}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{2}{j}^{\mathrm{2}} −\pi{j}+\mathrm{0}.\mathrm{25}\pi^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$${j}=\frac{\pi\pm\sqrt{\pi^{\mathrm{2}} −\mathrm{4}\left(\mathrm{2}\right)\left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−\mathrm{1}\right)}}{\mathrm{4}} \\ $$$${j}=\frac{\pi\pm\sqrt{−\pi^{\mathrm{2}} +\mathrm{8}}}{\mathrm{4}}=\frac{\pi\pm{i}\sqrt{\pi^{\mathrm{2}} −\mathrm{8}}}{\mathrm{4}} \\ $$$$\therefore\:{u}={cos}\left(\frac{\pi\pm{i}\sqrt{\pi^{\mathrm{2}} −\mathrm{8}}}{\mathrm{4}}\right) \\ $$$$ \\ $$

Commented by prakash jain last updated on 21/Jun/16

u=sin (cos u)  u=cos (sin u)  Both equation are not simulatenoeus.  u=.695 will statify one equation.

$${u}=\mathrm{sin}\:\left(\mathrm{cos}\:{u}\right) \\ $$$${u}=\mathrm{cos}\:\left(\mathrm{sin}\:{u}\right) \\ $$$$\mathrm{Both}\:\mathrm{equation}\:\mathrm{are}\:\mathrm{not}\:\mathrm{simulatenoeus}. \\ $$$${u}=.\mathrm{695}\:{will}\:{statify}\:{one}\:{equation}. \\ $$

Commented by Yozzii last updated on 21/Jun/16

No limit exists then?

$${No}\:{limit}\:{exists}\:{then}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com