Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 65134 by turbo msup by abdo last updated on 25/Jul/19

let U_n  a sequence U_0 =a and  U_n =nU_(n−1)    −2   (n>0)  calculate U_n  interms of n.

$${let}\:{U}_{{n}} \:{a}\:{sequence}\:{U}_{\mathrm{0}} ={a}\:{and} \\ $$ $${U}_{{n}} ={nU}_{{n}−\mathrm{1}} \:\:\:−\mathrm{2}\:\:\:\left({n}>\mathrm{0}\right) \\ $$ $${calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n}. \\ $$

Commented by~ À ® @ 237 ~ last updated on 25/Jul/19

     Let  U_n = n!V_n    now  let look for V_n   the equality  gives  n!V_(n ) −n[(n−1)V_(n−1) ]=−2   then  ∀ k >1     V_k −V_(k−1) = ((−2)/(k!))   then  Σ_(k=1) ^n (V_k  −V_(k−1) )= Σ_(k=1) ^n  ((−2)/(k!))         finally  V_n  = V_0  −Σ_(k=1) ^n (2/(k!))  V_0 =U_0 =a  so  U_n = a.n! −n!Σ_(k=1) ^n (2/(k!))

$$\:\:\:\:\:{Let}\:\:{U}_{{n}} =\:{n}!{V}_{{n}} \:\:\:{now}\:\:{let}\:{look}\:{for}\:{V}_{{n}} \\ $$ $${the}\:{equality}\:\:{gives}\:\:{n}!{V}_{{n}\:} −{n}\left[\left({n}−\mathrm{1}\right){V}_{{n}−\mathrm{1}} \right]=−\mathrm{2}\: \\ $$ $${then}\:\:\forall\:{k}\:>\mathrm{1}\:\:\:\:\:{V}_{{k}} −{V}_{{k}−\mathrm{1}} =\:\frac{−\mathrm{2}}{{k}!}\: \\ $$ $${then}\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({V}_{{k}} \:−{V}_{{k}−\mathrm{1}} \right)=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{−\mathrm{2}}{{k}!}\:\: \\ $$ $$\:\:\:\:\:{finally}\:\:{V}_{{n}} \:=\:{V}_{\mathrm{0}} \:−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{2}}{{k}!} \\ $$ $${V}_{\mathrm{0}} ={U}_{\mathrm{0}} ={a} \\ $$ $${so}\:\:{U}_{{n}} =\:{a}.{n}!\:−{n}!\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{2}}{{k}!} \\ $$

Commented by~ À ® @ 237 ~ last updated on 25/Jul/19

     Let  U_n = n!V_n    now  let look for V_n   the equality  gives  n!V_(n ) −n[(n−1)V_(n−1) ]=−2   then  ∀ k >1     V_k −V_(k−1) = ((−2)/(k!))   then  Σ_(k=1) ^n (V_k  −V_(k−1) )= Σ_(k=1) ^n  ((−2)/(k!))         finally  V_n  = V_0  −Σ_(k=1) ^n (2/(k!))  V_0 =U_0 =a  so  U_n = a.n! −n!Σ_(k=1) ^n (2/(k!))

$$\:\:\:\:\:{Let}\:\:{U}_{{n}} =\:{n}!{V}_{{n}} \:\:\:{now}\:\:{let}\:{look}\:{for}\:{V}_{{n}} \\ $$ $${the}\:{equality}\:\:{gives}\:\:{n}!{V}_{{n}\:} −{n}\left[\left({n}−\mathrm{1}\right){V}_{{n}−\mathrm{1}} \right]=−\mathrm{2}\: \\ $$ $${then}\:\:\forall\:{k}\:>\mathrm{1}\:\:\:\:\:{V}_{{k}} −{V}_{{k}−\mathrm{1}} =\:\frac{−\mathrm{2}}{{k}!}\: \\ $$ $${then}\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({V}_{{k}} \:−{V}_{{k}−\mathrm{1}} \right)=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{−\mathrm{2}}{{k}!}\:\: \\ $$ $$\:\:\:\:\:{finally}\:\:{V}_{{n}} \:=\:{V}_{\mathrm{0}} \:−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{2}}{{k}!} \\ $$ $${V}_{\mathrm{0}} ={U}_{\mathrm{0}} ={a} \\ $$ $${so}\:\:{U}_{{n}} =\:{a}.{n}!\:−{n}!\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{2}}{{k}!} \\ $$

Commented bymathmax by abdo last updated on 25/Jul/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented bymathmax by abdo last updated on 26/Jul/19

let V_n =(U_n /(n!)) ⇒V_(n+1) −V_n =(U_(n+1) /((n+1)!)) −(U_n /(n!)) =(((n+1)U_n −2)/((n+1)!)) −(U_n /(n!))  =(U_n /(n!)) −(2/((n+1)!)) −(U_n /(n!)) =−(2/((n+1)!)) ⇒  Σ_(k=0) ^(n−1)  (V_(k+1) −V_k ) =−2 Σ_(k=0) ^(n−1)  (1/((k+1)!)) ⇒  V_1 −V_0  +V_2 −V_1  +....+V_n −V_(n−1) =−2 Σ_(k=1) ^n  (1/(k!)) ⇒  V_n =V_0  −2Σ_(k=1) ^n  (1/(k!)) =a −2 Σ_(k=1) ^n  (1/(k!))  we have U_n =n!V_n  ⇒  U_n =n!(a−2 Σ_(k=1) ^n  (1/(k!)))  remark  we see that lim_(n→+∞)  (U_n /(n!)) =a+2 −2e

$${let}\:{V}_{{n}} =\frac{{U}_{{n}} }{{n}!}\:\Rightarrow{V}_{{n}+\mathrm{1}} −{V}_{{n}} =\frac{{U}_{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)!}\:−\frac{{U}_{{n}} }{{n}!}\:=\frac{\left({n}+\mathrm{1}\right){U}_{{n}} −\mathrm{2}}{\left({n}+\mathrm{1}\right)!}\:−\frac{{U}_{{n}} }{{n}!} \\ $$ $$=\frac{{U}_{{n}} }{{n}!}\:−\frac{\mathrm{2}}{\left({n}+\mathrm{1}\right)!}\:−\frac{{U}_{{n}} }{{n}!}\:=−\frac{\mathrm{2}}{\left({n}+\mathrm{1}\right)!}\:\Rightarrow \\ $$ $$\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left({V}_{{k}+\mathrm{1}} −{V}_{{k}} \right)\:=−\mathrm{2}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)!}\:\Rightarrow \\ $$ $${V}_{\mathrm{1}} −{V}_{\mathrm{0}} \:+{V}_{\mathrm{2}} −{V}_{\mathrm{1}} \:+....+{V}_{{n}} −{V}_{{n}−\mathrm{1}} =−\mathrm{2}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\Rightarrow \\ $$ $${V}_{{n}} ={V}_{\mathrm{0}} \:−\mathrm{2}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:={a}\:−\mathrm{2}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\:{we}\:{have}\:{U}_{{n}} ={n}!{V}_{{n}} \:\Rightarrow \\ $$ $${U}_{{n}} ={n}!\left({a}−\mathrm{2}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\right) \\ $$ $${remark}\:\:{we}\:{see}\:{that}\:{lim}_{{n}\rightarrow+\infty} \:\frac{{U}_{{n}} }{{n}!}\:={a}+\mathrm{2}\:−\mathrm{2}{e} \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com