Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 65285 by mathmax by abdo last updated on 27/Jul/19

let f(x) =e^(−x^2 ) ln(1−x)  developp f at integr serie.

$${let}\:{f}\left({x}\right)\:={e}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{1}−{x}\right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Commented by mathmax by abdo last updated on 30/Jul/19

we have e^(−x^2 ) =Σ_(n=0) ^∞   (((−x^2 )^n )/(n!)) =Σ_(n=0) ^∞  (((−1)^n x^(2n) )/(n!))  ln^′ (1−x) =−(1/(1−x)) =−Σ_(n=0) ^∞  x^n  ⇒ln(1−x) =−Σ_(n=0) ^∞  (x^(n+1) /(n+1)) +c  (c=0)⇒ln(1−x) =−Σ_(n=1) ^∞  (x^n /n) ⇒  f(x) =−(Σ_(n=0) ^∞  (((−1)^n x^(2n) )/(n!)))(Σ_(n=1) ^∞  (x^n /n))  =−(1+Σ_(n=1) ^∞  (((−1)^n  x^(2n) )/(n!)))(Σ_(n=1) ^∞  (x^n /n))  −Σ_(n=1) ^∞  (x^n /n) −(Σ_(n=1) ^∞  (((−1)^n x^(2n) )/(n!)))(Σ_(n=1) ^∞  (x^n /n))  (Σ_(n=1) ^∞  a_n )(Σ_(n=1) ^∞ b_n ) =Σ c_n    with c_n =Σ_(i+j=n)  a_i b_j    =Σ_(i=1) ^(n−1) a_i b_(n−i)   =Σ_(i=1) ^(n−1)   (((−1)^i x^(2i) )/(i!)) (x^(n−i) /((n−i))) =Σ_(i=1) ^(n−1)  (((−1)^i )/((n−i)i!)) x^(n+i)  ⇒  f(x) =Σ_(n=1) ^∞ {Σ_(i=1) ^(n−1)   (((−1)^i )/((n−i)i!))x^(n+i) }−Σ_(n=1) ^∞  (x^n /n) .

$${we}\:{have}\:{e}^{−{x}^{\mathrm{2}} } =\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−{x}^{\mathrm{2}} \right)^{{n}} }{{n}!}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{{n}!} \\ $$$${ln}^{'} \left(\mathrm{1}−{x}\right)\:=−\frac{\mathrm{1}}{\mathrm{1}−{x}}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{{n}} \:\Rightarrow{ln}\left(\mathrm{1}−{x}\right)\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:+{c} \\ $$$$\left({c}=\mathrm{0}\right)\Rightarrow{ln}\left(\mathrm{1}−{x}\right)\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:\Rightarrow \\ $$$${f}\left({x}\right)\:=−\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{{n}!}\right)\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\right) \\ $$$$=−\left(\mathrm{1}+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}} }{{n}!}\right)\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\right) \\ $$$$−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:−\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{{n}!}\right)\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\right) \\ $$$$\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} \right)\left(\sum_{{n}=\mathrm{1}} ^{\infty} {b}_{{n}} \right)\:=\Sigma\:{c}_{{n}} \:\:\:{with}\:{c}_{{n}} =\sum_{{i}+{j}={n}} \:{a}_{{i}} {b}_{{j}} \:\:\:=\sum_{{i}=\mathrm{1}} ^{{n}−\mathrm{1}} {a}_{{i}} {b}_{{n}−{i}} \\ $$$$=\sum_{{i}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{i}} {x}^{\mathrm{2}{i}} }{{i}!}\:\frac{{x}^{{n}−{i}} }{\left({n}−{i}\right)}\:=\sum_{{i}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{\left(−\mathrm{1}\right)^{{i}} }{\left({n}−{i}\right){i}!}\:{x}^{{n}+{i}} \:\Rightarrow \\ $$$${f}\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \left\{\sum_{{i}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{i}} }{\left({n}−{i}\right){i}!}{x}^{{n}+{i}} \right\}−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com