Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 6564 by Yozzii last updated on 03/Jul/16

Let φ={ l_1  , l_2  , l_3  } be a set of three, nonparallel  lines that all meet at one point R in   the plane. Investigate conditions on φ  such that R is the centroid of some triangle.

$${Let}\:\phi=\left\{\:{l}_{\mathrm{1}} \:,\:{l}_{\mathrm{2}} \:,\:{l}_{\mathrm{3}} \:\right\}\:{be}\:{a}\:{set}\:{of}\:{three},\:{nonparallel} \\ $$$${lines}\:{that}\:{all}\:{meet}\:{at}\:{one}\:{point}\:{R}\:{in}\: \\ $$$${the}\:{plane}.\:{Investigate}\:{conditions}\:{on}\:\phi \\ $$$${such}\:{that}\:{R}\:{is}\:{the}\:{centroid}\:{of}\:{some}\:{triangle}. \\ $$$$ \\ $$$$ \\ $$

Commented by Yozzii last updated on 03/Jul/16

Equivalently, prove/disprove that  there exists a triangle whose centroid  is that of the point of intersection  of any three concurrent nonparallel lines  in the plane.

$${Equivalently},\:{prove}/{disprove}\:{that} \\ $$$${there}\:{exists}\:{a}\:{triangle}\:{whose}\:{centroid} \\ $$$${is}\:{that}\:{of}\:{the}\:{point}\:{of}\:{intersection} \\ $$$${of}\:{any}\:{three}\:{concurrent}\:{nonparallel}\:{lines} \\ $$$${in}\:{the}\:{plane}. \\ $$

Commented by Rasheed Soomro last updated on 03/Jul/16

Not related to above  Sharing: See intmath.com if you haven′t   seen already. Subscribe for intmath newsletter.  Perhaps there is  something of interst for you.

$${Not}\:{related}\:{to}\:{above} \\ $$$${Sharing}:\:{See}\:\mathrm{intmath}.\mathrm{com}\:{if}\:{you}\:{haven}'{t}\: \\ $$$${seen}\:{already}.\:{Subscribe}\:{for}\:{intmath}\:{newsletter}. \\ $$$${Perhaps}\:{there}\:{is}\:\:{something}\:{of}\:{interst}\:{for}\:{you}. \\ $$

Commented by Yozzii last updated on 03/Jul/16

Interesting website. Thanks!

$${Interesting}\:{website}.\:{Thanks}! \\ $$

Commented by Rasheed Soomro last updated on 05/Jul/16

Commented by Rasheed Soomro last updated on 05/Jul/16

A median is divided at the centroid in  ratio 2:1 from the vertex of the triangle.     p,q and r are three given concurrent lines  cutting at the point O.  take A and  D on any of three lines(say p here)  in such a way that                  ∣AO∣ : ∣OD∣ = 2 : 1  Now  if  A is a vertex of the required triangle and  D is  midpoint of  its (A′s) opposite side, then AD is  a median of the triangle.  We have to prove now that there exist points B and C  on lines r and q, such that D is midpoint of BC  i-e ∣BD∣=∣DC∣  and  B, D,C are collinear.  continue

$${A}\:{median}\:{is}\:{divided}\:{at}\:{the}\:{centroid}\:{in} \\ $$$${ratio}\:\mathrm{2}:\mathrm{1}\:{from}\:{the}\:{vertex}\:{of}\:{the}\:{triangle}. \\ $$$$ \\ $$$$\:{p},{q}\:{and}\:{r}\:{are}\:{three}\:{given}\:{concurrent}\:{lines} \\ $$$${cutting}\:{at}\:{the}\:{point}\:\mathrm{O}. \\ $$$${take}\:\mathrm{A}\:{and}\:\:\mathrm{D}\:{on}\:{any}\:{of}\:{three}\:{lines}\left({say}\:{p}\:{here}\right) \\ $$$${in}\:{such}\:{a}\:{way}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\mathrm{AO}\mid\::\:\mid\mathrm{OD}\mid\:=\:\mathrm{2}\::\:\mathrm{1} \\ $$$${Now}\:\:{if}\:\:\mathrm{A}\:{is}\:{a}\:{vertex}\:{of}\:{the}\:{required}\:{triangle}\:{and}\:\:\mathrm{D}\:{is} \\ $$$${midpoint}\:{of}\:\:{its}\:\left(\mathrm{A}'{s}\right)\:{opposite}\:{side},\:{then}\:\mathrm{AD}\:{is} \\ $$$${a}\:{median}\:{of}\:{the}\:{triangle}. \\ $$$${We}\:{have}\:{to}\:{prove}\:{now}\:{that}\:{there}\:{exist}\:{points}\:\mathrm{B}\:{and}\:\mathrm{C} \\ $$$${on}\:{lines}\:{r}\:{and}\:{q},\:{such}\:{that}\:\mathrm{D}\:{is}\:{midpoint}\:{of}\:\mathrm{BC} \\ $$$${i}-{e}\:\mid\mathrm{BD}\mid=\mid\mathrm{DC}\mid\:\:{and}\:\:\mathrm{B},\:\mathrm{D},\mathrm{C}\:{are}\:{collinear}. \\ $$$${continue} \\ $$

Answered by Rasheed Soomro last updated on 06/Jul/16

Commented by Rasheed Soomro last updated on 07/Jul/16

Analytical Approach  Let one of three given concurrent lines(named p)     is taken as y-axis and the point of their concurrency    is taken as origin of coordiate system.  Since p is along y-axis its equation is                       p:  x=0  Also q and r pass through O (0,0) their equatons  will be of tbe form  y=mx  Let              q:  y=m_q x    and     r:   y= m_r x                             [m_q   and  m_r   are slopes]       Let a triangle ABC is such that  (i) A and D are on line p (y-axis)  (ii) ∣AO∣ : ∣OD∣ = 2 : 1  (iii) D is midpoint of  BC      ∴  AD is a median of the triangle and O is its             centroid.  Assume  unit  of  coordinate system equal to ∣OD∣  then in  the diagram above  D=(0,−1) and  A=(0,2)  Let B=(b_1 ,b_2 ) and  C=(c_1 ,c_2 )  ∵  D(0,−1)  is midpoint of BC  ∴     ((b_1 +c_1 )/2)=0  ∧  ((b_2 +c_2 )/2)=−1      Or      c_1 =−b_1   ∧  c_2 =−2−b_2       Or   C=(c_1  , c_2 )=(−b_1  , −2−b_2 )    If  B and C are on given  lines r and  q  respectively  Then coordinates of B and C will satisfy the equations  of  r  and   q   respectively  r:   y= m_r x  ⇒ b_2 =m_r b_1 .........................(i)  q:  y=m_q x  ⇒  −2−b_2 =−m_q b_1 ...............(ii)  From (i)  and  (ii)       −2=(m_r −m_q )b_1  ⇒ b_1 =((−2)/(m_r −m_q ))      b_2 =m_r (((−2)/(m_r −m_q )))=((−2m_r )/(m_r −m_q ))  B=(b_1 ,b_2 )=(((−2)/(m_r −m_q )) , ((−2m_r )/(m_r −m_q )))...................(iii)  C=(−b_1  , −2−b_2 )=((2/(m_r −m_q )) ,  ((2m_r )/(m_r −m_q ))−2)  C=((2/(m_r −m_q )),((2m_q )/(m_r −m_q ))).................................(iv)  So from  (i)  and   (iv)   if   m_r ≠m_q   , B and C are on r and  q respectively.  So  finally   If   all the three concurrent lines  have   different slopes  there exist a  triangle whose  centroid  is the point of concurrency  of  given lines

$$\mathcal{A}{nalytical}\:\mathcal{A}{pproach} \\ $$$${Let}\:{one}\:{of}\:{three}\:{given}\:{concurrent}\:{lines}\left({named}\:{p}\right) \\ $$$$\:\:\:{is}\:{taken}\:{as}\:{y}-{axis}\:{and}\:{the}\:{point}\:{of}\:{their}\:{concurrency} \\ $$$$\:\:{is}\:{taken}\:{as}\:{origin}\:{of}\:{coordiate}\:{system}. \\ $$$${Since}\:{p}\:{is}\:{along}\:{y}-{axis}\:{its}\:{equation}\:{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{p}:\:\:{x}=\mathrm{0} \\ $$$${Also}\:{q}\:{and}\:{r}\:{pass}\:{through}\:\mathrm{O}\:\left(\mathrm{0},\mathrm{0}\right)\:{their}\:{equatons} \\ $$$${will}\:{be}\:{of}\:{tbe}\:{form}\:\:{y}={mx} \\ $$$${Let}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{q}:\:\:{y}={m}_{{q}} {x}\:\:\:\:{and}\:\:\:\:\:{r}:\:\:\:{y}=\:{m}_{{r}} {x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{m}_{{q}} \:\:{and}\:\:{m}_{{r}} \:\:{are}\:{slopes}\right] \\ $$$$\:\:\: \\ $$$${Let}\:{a}\:{triangle}\:\mathrm{ABC}\:{is}\:{such}\:{that} \\ $$$$\left({i}\right)\:\mathrm{A}\:{and}\:\mathrm{D}\:{are}\:{on}\:{line}\:{p}\:\left({y}-{axis}\right) \\ $$$$\left({ii}\right)\:\mid\mathrm{AO}\mid\::\:\mid\mathrm{OD}\mid\:=\:\mathrm{2}\::\:\mathrm{1} \\ $$$$\left({iii}\right)\:\mathrm{D}\:{is}\:{midpoint}\:{of}\:\:\mathrm{BC} \\ $$$$\:\:\:\:\therefore\:\:\mathrm{AD}\:{is}\:{a}\:{median}\:{of}\:{the}\:{triangle}\:{and}\:\mathrm{O}\:{is}\:{its} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{centroid}. \\ $$$${Assume}\:\:\boldsymbol{{unit}}\:\:{of}\:\:{coordinate}\:{system}\:{equal}\:{to}\:\mid\mathrm{OD}\mid \\ $$$${then}\:{in}\:\:{the}\:{diagram}\:{above}\:\:\mathrm{D}=\left(\mathrm{0},−\mathrm{1}\right)\:{and}\:\:\mathrm{A}=\left(\mathrm{0},\mathrm{2}\right) \\ $$$${Let}\:\mathrm{B}=\left({b}_{\mathrm{1}} ,{b}_{\mathrm{2}} \right)\:{and}\:\:\mathrm{C}=\left({c}_{\mathrm{1}} ,{c}_{\mathrm{2}} \right) \\ $$$$\because\:\:\mathrm{D}\left(\mathrm{0},−\mathrm{1}\right)\:\:{is}\:{midpoint}\:{of}\:\mathrm{BC} \\ $$$$\therefore\:\:\:\:\:\frac{{b}_{\mathrm{1}} +{c}_{\mathrm{1}} }{\mathrm{2}}=\mathrm{0}\:\:\wedge\:\:\frac{{b}_{\mathrm{2}} +{c}_{\mathrm{2}} }{\mathrm{2}}=−\mathrm{1} \\ $$$$\:\:\:\:{Or}\:\:\:\:\:\:{c}_{\mathrm{1}} =−{b}_{\mathrm{1}} \:\:\wedge\:\:{c}_{\mathrm{2}} =−\mathrm{2}−{b}_{\mathrm{2}} \\ $$$$\:\:\:\:{Or}\:\:\:\mathrm{C}=\left({c}_{\mathrm{1}} \:,\:{c}_{\mathrm{2}} \right)=\left(−{b}_{\mathrm{1}} \:,\:−\mathrm{2}−{b}_{\mathrm{2}} \right) \\ $$$$ \\ $$$${If}\:\:\mathrm{B}\:{and}\:\mathrm{C}\:{are}\:{on}\:{given}\:\:{lines}\:{r}\:{and}\:\:{q}\:\:{respectively} \\ $$$${Then}\:{coordinates}\:{of}\:\mathrm{B}\:{and}\:\mathrm{C}\:{will}\:{satisfy}\:{the}\:{equations} \\ $$$${of}\:\:{r}\:\:{and}\:\:\:{q}\:\:\:{respectively} \\ $$$${r}:\:\:\:{y}=\:{m}_{{r}} {x}\:\:\Rightarrow\:{b}_{\mathrm{2}} ={m}_{{r}} {b}_{\mathrm{1}} .........................\left({i}\right) \\ $$$${q}:\:\:{y}={m}_{{q}} {x}\:\:\Rightarrow\:\:−\mathrm{2}−{b}_{\mathrm{2}} =−{m}_{{q}} {b}_{\mathrm{1}} ...............\left({ii}\right) \\ $$$${From}\:\left({i}\right)\:\:{and}\:\:\left({ii}\right) \\ $$$$\:\:\:\:\:−\mathrm{2}=\left({m}_{{r}} −{m}_{{q}} \right){b}_{\mathrm{1}} \:\Rightarrow\:{b}_{\mathrm{1}} =\frac{−\mathrm{2}}{{m}_{{r}} −{m}_{{q}} } \\ $$$$\:\:\:\:{b}_{\mathrm{2}} ={m}_{{r}} \left(\frac{−\mathrm{2}}{{m}_{{r}} −{m}_{{q}} }\right)=\frac{−\mathrm{2}{m}_{{r}} }{{m}_{{r}} −{m}_{{q}} } \\ $$$$\mathrm{B}=\left({b}_{\mathrm{1}} ,{b}_{\mathrm{2}} \right)=\left(\frac{−\mathrm{2}}{{m}_{{r}} −{m}_{{q}} }\:,\:\frac{−\mathrm{2}{m}_{{r}} }{{m}_{{r}} −{m}_{{q}} }\right)...................\left({iii}\right) \\ $$$$\mathrm{C}=\left(−{b}_{\mathrm{1}} \:,\:−\mathrm{2}−{b}_{\mathrm{2}} \right)=\left(\frac{\mathrm{2}}{{m}_{{r}} −{m}_{{q}} }\:,\:\:\frac{\mathrm{2}{m}_{{r}} }{{m}_{{r}} −{m}_{{q}} }−\mathrm{2}\right) \\ $$$$\mathrm{C}=\left(\frac{\mathrm{2}}{{m}_{{r}} −{m}_{{q}} },\frac{\mathrm{2}{m}_{{q}} }{{m}_{{r}} −{m}_{{q}} }\right).................................\left({iv}\right) \\ $$$${So}\:{from}\:\:\left({i}\right)\:\:{and}\:\:\:\left({iv}\right)\: \\ $$$${if}\:\:\:{m}_{{r}} \neq{m}_{{q}} \:\:,\:\mathrm{B}\:{and}\:\mathrm{C}\:{are}\:{on}\:{r}\:{and}\:\:{q}\:{respectively}. \\ $$$${So}\:\:{finally}\:\:\:{If}\:\:\:{all}\:{the}\:{three}\:{concurrent}\:{lines}\:\:{have}\: \\ $$$$\boldsymbol{{different}}\:\boldsymbol{{slopes}}\:\:{there}\:{exist}\:{a}\:\:{triangle}\:{whose} \\ $$$${centroid}\:\:{is}\:{the}\:{point}\:{of}\:{concurrency}\:\:{of}\:\:{given}\:{lines}\: \\ $$$$ \\ $$$$ \\ $$

Commented by Yozzii last updated on 07/Jul/16

Thanks! Nice approach.

$${Thanks}!\:{Nice}\:{approach}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com