Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 65782 by Rio Michael last updated on 03/Aug/19

 Evaluate ∫_0 ^2 (3x^2 −2x + 4)^7 dx  hence show that  (d/dx)(coshx) = sinh x

$$\:{Evaluate}\:\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}\:+\:\mathrm{4}\right)^{\mathrm{7}} {dx} \\ $$$${hence}\:{show}\:{that}\:\:\frac{{d}}{{dx}}\left({coshx}\right)\:=\:{sinh}\:{x} \\ $$

Commented by mathmax by abdo last updated on 04/Aug/19

we have (3x^2 −2x+4)^7  =Σ_(k=0) ^7  C_7 ^k (3x^2 −2x)^k  4^(7−k)   =Σ_(k=0) ^7  x^k   C_7 ^k (3x−2)^k  4^(7−k)   =Σ_(k=0) ^7  4^(7−k)  x^k C_7 ^k { Σ_(p=0) ^k  C_k ^p  (3x)^p (−2)^(k−p) }  =Σ_(k=0) ^7  4^(7−k) C_7 ^k  {Σ_(p=0) ^k (−2)^(k−p) 3^p  C_k ^p   x^(p+k)  } ⇒  ∫_0 ^2 (3x^2 −2x +4)^7 dx =[Σ_(k=0) ^7  4^(7−k)  C_7 ^k {Σ_(p=0) ^k (−2)^(k−p)  3^p  C_k ^p  (x^(p+k+1) /(p+k+1))}]_0 ^2   =Σ_(k=0) ^7  4^(7−k)  C_7 ^k {Σ_(p=0) ^k (−2)^(k−p) 3^p  C_k ^p  (2^(p+k+1) /(p+k+1))}

$${we}\:{have}\:\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{4}\right)^{\mathrm{7}} \:=\sum_{{k}=\mathrm{0}} ^{\mathrm{7}} \:{C}_{\mathrm{7}} ^{{k}} \left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}\right)^{{k}} \:\mathrm{4}^{\mathrm{7}−{k}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{7}} \:{x}^{{k}} \:\:{C}_{\mathrm{7}} ^{{k}} \left(\mathrm{3}{x}−\mathrm{2}\right)^{{k}} \:\mathrm{4}^{\mathrm{7}−{k}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{7}} \:\mathrm{4}^{\mathrm{7}−{k}} \:{x}^{{k}} {C}_{\mathrm{7}} ^{{k}} \left\{\:\sum_{{p}=\mathrm{0}} ^{{k}} \:{C}_{{k}} ^{{p}} \:\left(\mathrm{3}{x}\right)^{{p}} \left(−\mathrm{2}\right)^{{k}−{p}} \right\} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{7}} \:\mathrm{4}^{\mathrm{7}−{k}} {C}_{\mathrm{7}} ^{{k}} \:\left\{\sum_{{p}=\mathrm{0}} ^{{k}} \left(−\mathrm{2}\right)^{{k}−{p}} \mathrm{3}^{{p}} \:{C}_{{k}} ^{{p}} \:\:{x}^{{p}+{k}} \:\right\}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}\:+\mathrm{4}\right)^{\mathrm{7}} {dx}\:=\left[\sum_{{k}=\mathrm{0}} ^{\mathrm{7}} \:\mathrm{4}^{\mathrm{7}−{k}} \:{C}_{\mathrm{7}} ^{{k}} \left\{\sum_{{p}=\mathrm{0}} ^{{k}} \left(−\mathrm{2}\right)^{{k}−{p}} \:\mathrm{3}^{{p}} \:{C}_{{k}} ^{{p}} \:\frac{{x}^{{p}+{k}+\mathrm{1}} }{{p}+{k}+\mathrm{1}}\right\}\right]_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{7}} \:\mathrm{4}^{\mathrm{7}−{k}} \:{C}_{\mathrm{7}} ^{{k}} \left\{\sum_{{p}=\mathrm{0}} ^{{k}} \left(−\mathrm{2}\right)^{{k}−{p}} \mathrm{3}^{{p}} \:{C}_{{k}} ^{{p}} \:\frac{\mathrm{2}^{{p}+{k}+\mathrm{1}} }{{p}+{k}+\mathrm{1}}\right\} \\ $$

Commented by mathmax by abdo last updated on 04/Aug/19

we have ch(x) =((e^x  +e^(−x) )/2) ⇒(d/dx)(ch(x))=((e^x −e^(−x) )/2) =sh(x)

$${we}\:{have}\:{ch}\left({x}\right)\:=\frac{{e}^{{x}} \:+{e}^{−{x}} }{\mathrm{2}}\:\Rightarrow\frac{{d}}{{dx}}\left({ch}\left({x}\right)\right)=\frac{{e}^{{x}} −{e}^{−{x}} }{\mathrm{2}}\:={sh}\left({x}\right) \\ $$

Commented by Rio Michael last updated on 04/Aug/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 04/Aug/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com