Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 66656 by Tanmay chaudhury last updated on 18/Aug/19

Commented by Rahul Kumar last updated on 18/Aug/19

please answer the question.

$${please}\:{answer}\:{the}\:{question}. \\ $$

Answered by mr W last updated on 18/Aug/19

Commented by mr W last updated on 18/Aug/19

let r=radius of the circles  let θ=((∠AOB)/2)  eqn. of ellipse:  (x^2 /a^2 )+(y^2 /b^2 )=1  with b=r+2r cos θ=r(1+2 cos θ)  x_B =2r sin θ  eqn. of circle at B:  (x−x_B )^2 +y^2 =r^2     intersection of circle B and ellipse:  (x^2 /a^2 )+((r^2 −(x−x_B )^2 )/b^2 )=1  (x^2 /a^2 )+((r^2 −x^2 −x_B ^2 +2x_B x)/b^2 )=1  (b^2 /a^2 )x^2 +r^2 −x^2 −4r^2 sin^2  θ+4r sin θ x=b^2   (1−(b^2 /a^2 ))x^2 −4rsin θ x−(r^2 −4r^2 sin^2  θ−b^2 )=0  due to tangency  Δ=16r^2 sin^2  θ+4(1−(b^2 /a^2 ))(r^2 −4r^2 sin^2  θ−b^2 )=0  ⇒4r^2 sin^2  θ+r^2 (1−(b^2 /a^2 ))(1−4 sin^2  θ−(b^2 /r^2 ))=0  ⇒4sin^2  θ+(1−(b^2 /a^2 ))[1−4 sin^2  θ−(1+2 cos θ)^2 ]=0  ⇒sin^2  θ−(1−(b^2 /a^2 ))(1+cos θ)=0  ⇒1−cos θ=1−(b^2 /a^2 )  ⇒(b^2 /a^2 )=cos θ  ⇒a^2 =(b^2 /(cos θ))  let P=((a^2 b^2 )/r^4 )=(b^4 /(r^4 cos θ))=(((1+2 cos θ)^4 )/(cos θ))  with λ=cos θ  ⇒P=(((1+2λ)^4 )/λ)  Area of ellipse =πab  minimum area of ellipse means also  minimum value of P, therefore  (dP/dλ)=((8(1+2λ)^3 )/λ)−(((1+2λ)^4 )/λ^2 )=0  8−((1+2λ)/λ)=0  ⇒6λ=1  ⇒λ=cos θ=(1/6)  ⇒sin θ=((√(35))/6)  ⇒tan θ=(√(35))  ⇒∠AOB=2θ=2 tan^(−1) (√(35))

$${let}\:{r}={radius}\:{of}\:{the}\:{circles} \\ $$$${let}\:\theta=\frac{\angle{AOB}}{\mathrm{2}} \\ $$$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${with}\:{b}={r}+\mathrm{2}{r}\:\mathrm{cos}\:\theta={r}\left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\theta\right) \\ $$$${x}_{{B}} =\mathrm{2}{r}\:\mathrm{sin}\:\theta \\ $$$${eqn}.\:{of}\:{circle}\:{at}\:{B}: \\ $$$$\left({x}−{x}_{{B}} \right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$ \\ $$$${intersection}\:{of}\:{circle}\:{B}\:{and}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{r}^{\mathrm{2}} −\left({x}−{x}_{{B}} \right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} −{x}_{{B}} ^{\mathrm{2}} +\mathrm{2}{x}_{{B}} {x}}{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }{x}^{\mathrm{2}} +{r}^{\mathrm{2}} −{x}^{\mathrm{2}} −\mathrm{4}{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{4}{r}\:\mathrm{sin}\:\theta\:{x}={b}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right){x}^{\mathrm{2}} −\mathrm{4}{r}\mathrm{sin}\:\theta\:{x}−\left({r}^{\mathrm{2}} −\mathrm{4}{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta−{b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${due}\:{to}\:{tangency} \\ $$$$\Delta=\mathrm{16}{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{4}\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\left({r}^{\mathrm{2}} −\mathrm{4}{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta−{b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{4}{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{r}^{\mathrm{2}} \left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\left(\mathrm{1}−\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\theta−\frac{{b}^{\mathrm{2}} }{{r}^{\mathrm{2}} }\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{4sin}^{\mathrm{2}} \:\theta+\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\left[\mathrm{1}−\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\theta−\left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{2}} \:\theta−\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\left(\mathrm{1}+\mathrm{cos}\:\theta\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}−\mathrm{cos}\:\theta=\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{cos}\:\theta \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\frac{{b}^{\mathrm{2}} }{\mathrm{cos}\:\theta} \\ $$$${let}\:{P}=\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{r}^{\mathrm{4}} }=\frac{{b}^{\mathrm{4}} }{{r}^{\mathrm{4}} \mathrm{cos}\:\theta}=\frac{\left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\theta\right)^{\mathrm{4}} }{\mathrm{cos}\:\theta} \\ $$$${with}\:\lambda=\mathrm{cos}\:\theta \\ $$$$\Rightarrow{P}=\frac{\left(\mathrm{1}+\mathrm{2}\lambda\right)^{\mathrm{4}} }{\lambda} \\ $$$${Area}\:{of}\:{ellipse}\:=\pi{ab} \\ $$$${minimum}\:{area}\:{of}\:{ellipse}\:{means}\:{also} \\ $$$${minimum}\:{value}\:{of}\:{P},\:{therefore} \\ $$$$\frac{{dP}}{{d}\lambda}=\frac{\mathrm{8}\left(\mathrm{1}+\mathrm{2}\lambda\right)^{\mathrm{3}} }{\lambda}−\frac{\left(\mathrm{1}+\mathrm{2}\lambda\right)^{\mathrm{4}} }{\lambda^{\mathrm{2}} }=\mathrm{0} \\ $$$$\mathrm{8}−\frac{\mathrm{1}+\mathrm{2}\lambda}{\lambda}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{6}\lambda=\mathrm{1} \\ $$$$\Rightarrow\lambda=\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{\sqrt{\mathrm{35}}}{\mathrm{6}} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\sqrt{\mathrm{35}} \\ $$$$\Rightarrow\angle{AOB}=\mathrm{2}\theta=\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \sqrt{\mathrm{35}} \\ $$

Commented by mr W last updated on 18/Aug/19

thanks sir!  can you please help checking my  solution. my result differs from  the options given in book.

$${thanks}\:{sir}! \\ $$$${can}\:{you}\:{please}\:{help}\:{checking}\:{my} \\ $$$${solution}.\:{my}\:{result}\:{differs}\:{from} \\ $$$${the}\:{options}\:{given}\:{in}\:{book}. \\ $$

Commented by Tanmay chaudhury last updated on 18/Aug/19

sir you are unique...

$${sir}\:{you}\:{are}\:{unique}... \\ $$

Commented by MJS last updated on 18/Aug/19

I get the same result

$$\mathrm{I}\:\mathrm{get}\:\mathrm{the}\:\mathrm{same}\:\mathrm{result} \\ $$

Commented by mr W last updated on 18/Aug/19

thanks for comfirming sir!  that means the answer given in book  is wrong.

$${thanks}\:{for}\:{comfirming}\:{sir}! \\ $$$${that}\:{means}\:{the}\:{answer}\:{given}\:{in}\:{book} \\ $$$${is}\:{wrong}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com