Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 66696 by mathmax by abdo last updated on 18/Aug/19

calculate lim_(x→0)      ((arctan(1+x^3 )−(π/4))/(xsin(x^2 )))

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)−\frac{\pi}{\mathrm{4}}}{{xsin}\left({x}^{\mathrm{2}} \right)} \\ $$

Commented by kaivan.ahmadi last updated on 18/Aug/19

lim_(x→0)  ((3x^2 /(1+(1+x^3 )^2 ))/(3x^2 ))=lim_(x→0) (1/1+(1+x^3 )^2 )=1/2

$${lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{3}{x}^{\mathrm{2}} /\left(\mathrm{1}+\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{2}} \right)}{\mathrm{3}{x}^{\mathrm{2}} }={lim}_{{x}\rightarrow\mathrm{0}} \left(\mathrm{1}/\mathrm{1}+\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{2}} \right)=\mathrm{1}/\mathrm{2} \\ $$

Commented by ~ À ® @ 237 ~ last updated on 18/Aug/19

let named it L  L=lim_(x→0)  ((arctan(1+x^3 ) −(π/4))/x^3 ) . (x^2 /(sin(x^2 )))   Now  lim_(x→0)  (x^2 /(sin(x^2 ))) = lim_(u→0)  (1/((sinu)/u)) = 1        ( u=x^2 )  lim_(x→0)  ((arctan(1+x^3 )−(π/4))/x^3 ) = lim_(v→0)  ((arctan(1+v)−(π/4))/v) =lim_(v→0)  (1/(1+(1+v)^2 )) = (1/2)      (v=x^3 )  So    L=(1/2)

$${let}\:{named}\:{it}\:{L} \\ $$$${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\:−\frac{\pi}{\mathrm{4}}}{{x}^{\mathrm{3}} }\:.\:\frac{{x}^{\mathrm{2}} }{{sin}\left({x}^{\mathrm{2}} \right)}\: \\ $$$${Now}\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} }{{sin}\left({x}^{\mathrm{2}} \right)}\:=\:\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\frac{{sinu}}{{u}}}\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\left(\:{u}={x}^{\mathrm{2}} \right) \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)−\frac{\pi}{\mathrm{4}}}{{x}^{\mathrm{3}} }\:=\:\underset{{v}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{arctan}\left(\mathrm{1}+{v}\right)−\frac{\pi}{\mathrm{4}}}{{v}}\:=\underset{{v}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{1}+{v}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\left({v}={x}^{\mathrm{3}} \right) \\ $$$${So}\:\:\:\:{L}=\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$ \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 19/Aug/19

let f(u) =arctan(1+u)  we have   f(u)=f(0)+u f^′ (0)+o(u^2 )  but f(0) =(π/4)  f^′ (u) =(1/(1+(1+u)^2 )) ⇒f^′ (0) =(1/2) ⇒f(u) =(π/4) +(1/2)u +o(u^2 ) ⇒  arctan(1+x^3 ) =(π/4) +(x^3 /2) +o(x^6 ) ⇒arctan(1+x^3 )−(π/4)∼(x^3 /2)  (x→0)  slso xsin(x^2 ) ∼ x^3  ⇒ lim_(x→0)   ((arctan(1+x^3 )−(π/4))/(xsin(x^2 ))) =lim_(x→0)  (x^3 /(2x^3 ))  =(1/2) .

$${let}\:{f}\left({u}\right)\:={arctan}\left(\mathrm{1}+{u}\right)\:\:{we}\:{have}\: \\ $$$${f}\left({u}\right)={f}\left(\mathrm{0}\right)+{u}\:{f}^{'} \left(\mathrm{0}\right)+{o}\left({u}^{\mathrm{2}} \right)\:\:{but}\:{f}\left(\mathrm{0}\right)\:=\frac{\pi}{\mathrm{4}} \\ $$$${f}^{'} \left({u}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{1}+{u}\right)^{\mathrm{2}} }\:\Rightarrow{f}^{'} \left(\mathrm{0}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{f}\left({u}\right)\:=\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}}{u}\:+{o}\left({u}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${arctan}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\:=\frac{\pi}{\mathrm{4}}\:+\frac{{x}^{\mathrm{3}} }{\mathrm{2}}\:+{o}\left({x}^{\mathrm{6}} \right)\:\Rightarrow{arctan}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)−\frac{\pi}{\mathrm{4}}\sim\frac{{x}^{\mathrm{3}} }{\mathrm{2}}\:\:\left({x}\rightarrow\mathrm{0}\right) \\ $$$${slso}\:{xsin}\left({x}^{\mathrm{2}} \right)\:\sim\:{x}^{\mathrm{3}} \:\Rightarrow\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)−\frac{\pi}{\mathrm{4}}}{{xsin}\left({x}^{\mathrm{2}} \right)}\:={lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{x}^{\mathrm{3}} }{\mathrm{2}{x}^{\mathrm{3}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$

Answered by Cmr 237 last updated on 18/Aug/19

Answered by Cmr 237 last updated on 18/Aug/19

with the limited develpment we   have:  arctan(1+x^3 )=(π/4)+(x^3 /2) +o(x^3 )  sin(x^2 )=x^2 +o(x^2 )  so  lim _(x→0) ((arctan(1+x^3 )−(π/4))/(xsin(x^2 )))=lim_  _(x→0) (((π/4)+(x^3 /2)−(π/4))/(x×x^2 ))                     =(1/2).

$${with}\:{the}\:{limited}\:{develpment}\:{we}\: \\ $$$${have}: \\ $$$${arctan}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)=\frac{\pi}{\mathrm{4}}+\frac{{x}^{\mathrm{3}} }{\mathrm{2}}\:+{o}\left({x}^{\mathrm{3}} \right) \\ $$$${sin}\left({x}^{\mathrm{2}} \right)={x}^{\mathrm{2}} +{o}\left({x}^{\mathrm{2}} \right) \\ $$$${so} \\ $$$${lim}\underset{{x}\rightarrow\mathrm{0}} {\:}\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)−\frac{\pi}{\mathrm{4}}}{{xsin}\left({x}^{\mathrm{2}} \right)}={li}\underset{} {{m}}\underset{{x}\rightarrow\mathrm{0}} {\:}\frac{\frac{\pi}{\mathrm{4}}+\frac{{x}^{\mathrm{3}} }{\mathrm{2}}−\frac{\pi}{\mathrm{4}}}{{x}×{x}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com