Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 6681 by Tawakalitu. last updated on 11/Jul/16

Answered by Rasheed Soomro last updated on 12/Jul/16

Join O and Y.  ∵  OX=OY=OZ  [Radii of same circle]  ∴ △XOY  and  △ZOY are issoscel triangles.  ∴  ∠XYO=∠OXY=30   and    ∠ZYO=∠OZY=20                [Base angles of an issoscel triangle are equal]  Now    ∠XYZ=∠OXY+∠OZY=30+20=50       So     ∠XOZ(minor)=50×2=100                 [Central angle is double of inscribed angle]]  Hence ∠XOZ (major (required angle) )=360−100=260

$${Join}\:\mathrm{O}\:{and}\:\mathrm{Y}. \\ $$$$\because\:\:\mathrm{OX}=\mathrm{OY}=\mathrm{OZ}\:\:\left[{Radii}\:{of}\:{same}\:{circle}\right] \\ $$$$\therefore\:\bigtriangleup\mathrm{XOY}\:\:{and}\:\:\bigtriangleup\mathrm{ZOY}\:{are}\:{issoscel}\:{triangles}. \\ $$$$\therefore\:\:\angle\mathrm{XYO}=\angle\mathrm{OXY}=\mathrm{30}\:\:\:{and}\:\:\:\:\angle\mathrm{ZYO}=\angle\mathrm{OZY}=\mathrm{20} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{Base}\:{angles}\:{of}\:{an}\:{issoscel}\:{triangle}\:{are}\:{equal}\right] \\ $$$${Now}\:\:\:\:\angle\mathrm{XYZ}=\angle\mathrm{OXY}+\angle\mathrm{OZY}=\mathrm{30}+\mathrm{20}=\mathrm{50} \\ $$$$\:\:\:\:\:{So}\:\:\:\:\:\angle\mathrm{XOZ}\left({minor}\right)=\mathrm{50}×\mathrm{2}=\mathrm{100} \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{Central}\:{angle}\:{is}\:{double}\:{of}\:{inscribed}\:{angle}\right]\right] \\ $$$${Hence}\:\angle\mathrm{XOZ}\:\left({major}\:\left({required}\:{angle}\right)\:\right)=\mathrm{360}−\mathrm{100}=\mathrm{260} \\ $$

Answered by Rasheed Soomro last updated on 12/Jul/16

An other approach  Join O and Y.  Now in △XOY          ∵    OX=OY      [Radii of same circle]         ∴     ∠OXY=∠OYX   [Opposite angle of equal sides]              But  ∠OXY=30     [Given]                So  ∠OYX=30  [Transitive property of ′=′]                     ∠XOY =180−(∠OXY+ ∠OYX)                                      =180−(30+30)=120  And in △ZOY in similar way as above                       ∠ZOY=140    ∠XOZ(major/required)=∠XOY +∠YOZ=120+140=260.

$${An}\:{other}\:{approach} \\ $$$${Join}\:{O}\:{and}\:{Y}. \\ $$$${Now}\:{in}\:\bigtriangleup{XOY} \\ $$$$\:\:\:\:\:\:\:\:\because\:\:\:\:{OX}={OY}\:\:\:\:\:\:\left[{Radii}\:{of}\:{same}\:{circle}\right] \\ $$$$\:\:\:\:\:\:\:\therefore\:\:\:\:\:\angle{OXY}=\angle{OYX}\:\:\:\left[{Opposite}\:{angle}\:{of}\:{equal}\:{sides}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{But}\:\:\angle{OXY}=\mathrm{30}\:\:\:\:\:\left[{Given}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{So}\:\:\angle{OYX}=\mathrm{30}\:\:\left[{Transitive}\:{property}\:{of}\:'='\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\angle{XOY}\:=\mathrm{180}−\left(\angle{OXY}+\:\angle{OYX}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{180}−\left(\mathrm{30}+\mathrm{30}\right)=\mathrm{120} \\ $$$${And}\:{in}\:\bigtriangleup{ZOY}\:{in}\:{similar}\:{way}\:{as}\:{above} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\angle{ZOY}=\mathrm{140} \\ $$$$ \\ $$$$\angle{XOZ}\left({major}/{required}\right)=\angle{XOY}\:+\angle{YOZ}=\mathrm{120}+\mathrm{140}=\mathrm{260}. \\ $$

Commented by Tawakalitu. last updated on 12/Jul/16

Thanks so much.

$${Thanks}\:{so}\:{much}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com