Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67018 by mathmax by abdo last updated on 21/Aug/19

find  ∫_0 ^∞   e^(−x) ln(1+x)dx

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {ln}\left(\mathrm{1}+{x}\right){dx} \\ $$

Commented by mathmax by abdo last updated on 24/Aug/19

let I =∫_0 ^∞  e^(−x) ln(1+x)dx ⇒I =_(1+x=t)    ∫_1 ^(+∞) e^(−(t−1)) ln(t)dt  =e ∫_1 ^(+∞)  e^(−t) ln(t)dt  we have ∫_0 ^∞  e^(−t) ln(t)dt =−γ ⇒  ∫_0 ^1  e^(−t) ln(t)dt +∫_1 ^(+∞) e^(−t) ln(t)dt =−γ ⇒  ∫_1 ^(+∞)  e^(−t) ln(t)dt =−γ−∫_0 ^1  e^(−t) ln(t)dt  we have  ∫_0 ^1  e^(−t) ln(t)dt =∫_0 ^1  (Σ_(n=0) ^∞  (((−1)^n t^n )/(n!))ln(t))dt  =Σ_(n=0) ^∞  (((−1)^n )/(n!)) ∫_0 ^1  t^n ln(t)dt  let A_n =∫_0 ^1  t^n ln(t)dt  by parts  A_n =[(t^(n+1) /(n+1))ln(t)]_0 ^1  −∫_0 ^1  (t^(n+1) /(n+1))(dt/t) =−(1/(n+1)) ∫_0 ^1  t^n dt =−(1/((n+1)^2 )) ⇒  ∫_0 ^1  e^(−t) ln(t)dt =−Σ_(n=0) ^∞  (((−1)^n )/(n!(n+1)^2 )) ⇒  I =−eγ+e Σ_(n=0) ^∞  (((−1)^n )/(n!(n+1)^2 )) ⇒  I =−eγ +e{1−(1/2^2 ) +(1/(2! 3^2 ))−(1/(3!4^2 ))+....}  and 10 terms give a best approximation of I  (γ is number of euler)

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {ln}\left(\mathrm{1}+{x}\right){dx}\:\Rightarrow{I}\:=_{\mathrm{1}+{x}={t}} \:\:\:\int_{\mathrm{1}} ^{+\infty} {e}^{−\left({t}−\mathrm{1}\right)} {ln}\left({t}\right){dt} \\ $$$$={e}\:\int_{\mathrm{1}} ^{+\infty} \:{e}^{−{t}} {ln}\left({t}\right){dt}\:\:{we}\:{have}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} {ln}\left({t}\right){dt}\:=−\gamma\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} {ln}\left({t}\right){dt}\:+\int_{\mathrm{1}} ^{+\infty} {e}^{−{t}} {ln}\left({t}\right){dt}\:=−\gamma\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:{e}^{−{t}} {ln}\left({t}\right){dt}\:=−\gamma−\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} {ln}\left({t}\right){dt}\:\:{we}\:{have} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} {ln}\left({t}\right){dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} {t}^{{n}} }{{n}!}{ln}\left({t}\right)\right){dt} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}} {ln}\left({t}\right){dt}\:\:{let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}} {ln}\left({t}\right){dt}\:\:{by}\:{parts} \\ $$$${A}_{{n}} =\left[\frac{{t}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}{ln}\left({t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\frac{{dt}}{{t}}\:=−\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}} {dt}\:=−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} {ln}\left({t}\right){dt}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${I}\:=−{e}\gamma+{e}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${I}\:=−{e}\gamma\:+{e}\left\{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{2}!\:\mathrm{3}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{3}!\mathrm{4}^{\mathrm{2}} }+....\right\} \\ $$$${and}\:\mathrm{10}\:{terms}\:{give}\:{a}\:{best}\:{approximation}\:{of}\:{I} \\ $$$$\left(\gamma\:{is}\:{number}\:{of}\:{euler}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com