Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 67501 by TawaTawa last updated on 28/Aug/19

Show that  1n^3  + 2n + 3n^2   is divisible by 2 and 3 for all positive integers n.

$$\mathrm{Show}\:\mathrm{that}\:\:\mathrm{1n}^{\mathrm{3}} \:+\:\mathrm{2n}\:+\:\mathrm{3n}^{\mathrm{2}} \:\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2}\:\mathrm{and}\:\mathrm{3}\:\mathrm{for}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{n}. \\ $$

Commented by Prithwish sen last updated on 28/Aug/19

Another approch  We know that  (1+x)^n =1+nx+ ((n(n−1))/(2!))x^2  + ((n(n−1)(n−2))/(3!))x^(3 +)   ........+((n(n−1)(n−2).......(n−r+1))/(r!)) x^r +.....+x^n   Now as far n∈N the coefficients of the expression  are integers  ∴           n(n−1)     must be divisible by 2! = 2  n(n−1)(n−2)        ′′         ′′        ′′             ′′   3! = 6  ...............................  n(n−1)(n−2)....(n−r+1)  must be divisible by r!  Now by putting n = n+2 at n(n−1)(n−2) we get ,  n(n+1)(n+2) must be divisible by 3! = 6 proved.

$$\mathrm{Another}\:\mathrm{approch} \\ $$$$\mathrm{We}\:\mathrm{know}\:\mathrm{that} \\ $$$$\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{n}} =\mathrm{1}+\mathrm{nx}+\:\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)}{\mathrm{2}!}\mathrm{x}^{\mathrm{2}} \:+\:\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{n}−\mathrm{2}\right)}{\mathrm{3}!}\mathrm{x}^{\mathrm{3}\:+} \\ $$$$........+\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{n}−\mathrm{2}\right).......\left(\mathrm{n}−\mathrm{r}+\mathrm{1}\right)}{\mathrm{r}!}\:\mathrm{x}^{\mathrm{r}} +.....+\mathrm{x}^{\mathrm{n}} \\ $$$$\mathrm{Now}\:\mathrm{as}\:\mathrm{far}\:\mathrm{n}\in\mathbb{N}\:\mathrm{the}\:\mathrm{coefficients}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\mathrm{are}\:\mathrm{integers} \\ $$$$\therefore\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{n}}−\mathrm{1}\right)\:\:\:\:\:\boldsymbol{\mathrm{must}}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{divisible}}\:\boldsymbol{\mathrm{by}}\:\mathrm{2}!\:=\:\mathrm{2} \\ $$$$\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{n}}−\mathrm{1}\right)\left(\boldsymbol{\mathrm{n}}−\mathrm{2}\right)\:\:\:\:\:\:\:\:''\:\:\:\:\:\:\:\:\:''\:\:\:\:\:\:\:\:''\:\:\:\:\:\:\:\:\:\:\:\:\:''\:\:\:\mathrm{3}!\:=\:\mathrm{6} \\ $$$$............................... \\ $$$$\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{n}}−\mathrm{1}\right)\left(\boldsymbol{\mathrm{n}}−\mathrm{2}\right)....\left(\boldsymbol{\mathrm{n}}−\boldsymbol{\mathrm{r}}+\mathrm{1}\right)\:\:\boldsymbol{\mathrm{must}}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{divisible}}\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{r}}! \\ $$$$\mathrm{Now}\:\mathrm{by}\:\mathrm{putting}\:\boldsymbol{\mathrm{n}}\:=\:\boldsymbol{\mathrm{n}}+\mathrm{2}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{n}}−\mathrm{1}\right)\left(\boldsymbol{\mathrm{n}}−\mathrm{2}\right)\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{get}}\:, \\ $$$$\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{n}}+\mathrm{1}\right)\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right)\:\boldsymbol{\mathrm{must}}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{divisible}}\:\boldsymbol{\mathrm{by}}\:\mathrm{3}!\:=\:\mathrm{6}\:\boldsymbol{\mathrm{proved}}. \\ $$

Commented by TawaTawa last updated on 28/Aug/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by Rasheed.Sindhi last updated on 28/Aug/19

n^3 +3n^2 +2n=n(n+1)(n+3)  For 2:n∈E ∨ n∈O   n ∈E⇒  2 ∣ n⇒2 ∣ n(n+1)(n+2)          ⇒2 ∣ n^3 +3n^2 +2n  n∈O⇒n+1∈E⇒2 ∣ n+1 ⇒2 ∣ n(n+1)(n+2)          ⇒2 ∣ n^3 +3n^2 +2n  For 3:n=3k or n=3k+1 or n=3k+2     ∀ k∈Z  n=3k⇒3∣n⇒3∣n(n+1)(n+2)                ⇒3∣n^3 +3n^2 +2n  n=3k+1⇒n+2=3k+1+2=3(k+1)                3∣n+2⇒3∣n(n+1)(n+2)                ⇒3∣n^3 +3n^2 +2n  n=3k+2⇒n+1=3k+3=3(k+1)             ⇒3∣n+1⇒3∣n(n+1)(n+2)                ⇒3∣n^3 +3n^2 +2n  Hence 2∣n^3 +3n^2 +2n ∧ 3∣n^3 +3n^2 +2n

$${n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{2}{n}={n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{3}\right) \\ $$$${For}\:\mathrm{2}:{n}\in\mathbb{E}\:\vee\:{n}\in\mathbb{O} \\ $$$$\:{n}\:\in\mathbb{E}\Rightarrow\:\:\mathrm{2}\:\mid\:{n}\Rightarrow\mathrm{2}\:\mid\:{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\mathrm{2}\:\mid\:{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{2}{n} \\ $$$${n}\in\mathbb{O}\Rightarrow{n}+\mathrm{1}\in\mathbb{E}\Rightarrow\mathrm{2}\:\mid\:{n}+\mathrm{1}\:\Rightarrow\mathrm{2}\:\mid\:{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\mathrm{2}\:\mid\:{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{2}{n} \\ $$$${For}\:\mathrm{3}:{n}=\mathrm{3}{k}\:{or}\:{n}=\mathrm{3}{k}+\mathrm{1}\:{or}\:{n}=\mathrm{3}{k}+\mathrm{2}\:\:\:\:\:\forall\:{k}\in\mathbb{Z} \\ $$$${n}=\mathrm{3}{k}\Rightarrow\mathrm{3}\mid{n}\Rightarrow\mathrm{3}\mid{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{3}\mid{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{2}{n} \\ $$$${n}=\mathrm{3}{k}+\mathrm{1}\Rightarrow{n}+\mathrm{2}=\mathrm{3}{k}+\mathrm{1}+\mathrm{2}=\mathrm{3}\left(\mathrm{k}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\mid{n}+\mathrm{2}\Rightarrow\mathrm{3}\mid{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{3}\mid{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{2}{n} \\ $$$${n}=\mathrm{3}{k}+\mathrm{2}\Rightarrow{n}+\mathrm{1}=\mathrm{3}{k}+\mathrm{3}=\mathrm{3}\left({k}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{3}\mid{n}+\mathrm{1}\Rightarrow\mathrm{3}\mid{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{3}\mid{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{2}{n} \\ $$$${Hence}\:\mathrm{2}\mid{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{2}{n}\:\wedge\:\mathrm{3}\mid{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{2}{n} \\ $$$$ \\ $$

Commented by TawaTawa last updated on 28/Aug/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by petrochengula last updated on 28/Aug/19

n^3 +2n+3n^2 =n(n+1)(n+2)  let the statement p(n) given as p(n):n^3 +2n+3n^2  is divisible by 2 and 3, ∀nεz^+   we observe that p(1) is true, since 1^2 +2+3=6 is divisible by 2 and 3  assume that p(n) is true for some integer k  p(k):k^3 +2k+3k^(2 )  is divisible by 2 and 3 such that k^3 +2k+3k^2 =2p and k^3 +2k+3k^2 =3q where p,qεZ^+ . Now to prove that p(k+1):(k+1)^3 +2(k+1)+3(k+1)^2   1^(st ) case  we have to show that p(k+1) is divisible by 2  (k+1)^3 +2(k+1)+3(k+1)^2 =k^3 +3k^2 +3k+2k+2+3(k^2 +2k+1)  =k^3 +2k+3k^2 +2(k^2 +3k+2)+(k+1)(k+2)  but k^3 +2k+3k^2 =2p ⇒k(k+1)(k+2)=2p⇒(k+1)(k+2)=((2p)/k)  (k+1)^3 +2(k+1)+3(k+1)^2 =2p+2(k^2 +3k+2)+((2p)/k)  =2(p+k^2 +3k+2+(p/k))=2m  2^(nd ) case  We have to show that p(k+1) is divisible by 3  (k+1)^3 +2(k+1)+3(k+1)^2 =k^3 +2k+3k^2 +3k^2 +9k+6  =3q+3(k^2 +3k+2)  =3(q+k^2 +3k+2)  Thus p(k+1) is true,whenever p(k) is true  Hence by the principle of mathematical induction p(n) is true for all positive integers number n.

$${n}^{\mathrm{3}} +\mathrm{2}{n}+\mathrm{3}{n}^{\mathrm{2}} ={n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right) \\ $$$${let}\:{the}\:{statement}\:{p}\left({n}\right)\:{given}\:{as}\:{p}\left({n}\right):{n}^{\mathrm{3}} +\mathrm{2}{n}+\mathrm{3}{n}^{\mathrm{2}} \:{is}\:{divisible}\:{by}\:\mathrm{2}\:{and}\:\mathrm{3},\:\forall{n}\epsilon{z}^{+} \\ $$$${we}\:{observe}\:{that}\:{p}\left(\mathrm{1}\right)\:{is}\:{true},\:{since}\:\mathrm{1}^{\mathrm{2}} +\mathrm{2}+\mathrm{3}=\mathrm{6}\:{is}\:{divisible}\:{by}\:\mathrm{2}\:{and}\:\mathrm{3} \\ $$$${assume}\:{that}\:{p}\left({n}\right)\:{is}\:{true}\:{for}\:{some}\:{integer}\:{k} \\ $$$${p}\left({k}\right):{k}^{\mathrm{3}} +\mathrm{2}{k}+\mathrm{3}{k}^{\mathrm{2}\:} \:{is}\:{divisible}\:{by}\:\mathrm{2}\:{and}\:\mathrm{3}\:{such}\:{that}\:{k}^{\mathrm{3}} +\mathrm{2}{k}+\mathrm{3}{k}^{\mathrm{2}} =\mathrm{2}{p}\:{and}\:{k}^{\mathrm{3}} +\mathrm{2}{k}+\mathrm{3}{k}^{\mathrm{2}} =\mathrm{3}{q}\:{where}\:{p},{q}\epsilon{Z}^{+} .\:{Now}\:{to}\:{prove}\:{that}\:{p}\left({k}+\mathrm{1}\right):\left({k}+\mathrm{1}\right)^{\mathrm{3}} +\mathrm{2}\left({k}+\mathrm{1}\right)+\mathrm{3}\left({k}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{1}^{{st}\:} {case} \\ $$$${we}\:{have}\:{to}\:{show}\:{that}\:{p}\left({k}+\mathrm{1}\right)\:{is}\:{divisible}\:{by}\:\mathrm{2} \\ $$$$\left({k}+\mathrm{1}\right)^{\mathrm{3}} +\mathrm{2}\left({k}+\mathrm{1}\right)+\mathrm{3}\left({k}+\mathrm{1}\right)^{\mathrm{2}} ={k}^{\mathrm{3}} +\mathrm{3}{k}^{\mathrm{2}} +\mathrm{3}{k}+\mathrm{2}{k}+\mathrm{2}+\mathrm{3}\left({k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{1}\right) \\ $$$$={k}^{\mathrm{3}} +\mathrm{2}{k}+\mathrm{3}{k}^{\mathrm{2}} +\mathrm{2}\left({k}^{\mathrm{2}} +\mathrm{3}{k}+\mathrm{2}\right)+\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}\right) \\ $$$${but}\:{k}^{\mathrm{3}} +\mathrm{2}{k}+\mathrm{3}{k}^{\mathrm{2}} =\mathrm{2}{p}\:\Rightarrow{k}\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}\right)=\mathrm{2}{p}\Rightarrow\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}\right)=\frac{\mathrm{2}{p}}{{k}} \\ $$$$\left({k}+\mathrm{1}\right)^{\mathrm{3}} +\mathrm{2}\left({k}+\mathrm{1}\right)+\mathrm{3}\left({k}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}{p}+\mathrm{2}\left({k}^{\mathrm{2}} +\mathrm{3}{k}+\mathrm{2}\right)+\frac{\mathrm{2}{p}}{{k}} \\ $$$$=\mathrm{2}\left({p}+{k}^{\mathrm{2}} +\mathrm{3}{k}+\mathrm{2}+\frac{{p}}{{k}}\right)=\mathrm{2}{m} \\ $$$$\mathrm{2}^{{nd}\:} {case} \\ $$$${We}\:{have}\:{to}\:{show}\:{that}\:{p}\left({k}+\mathrm{1}\right)\:{is}\:{divisible}\:{by}\:\mathrm{3} \\ $$$$\left({k}+\mathrm{1}\right)^{\mathrm{3}} +\mathrm{2}\left({k}+\mathrm{1}\right)+\mathrm{3}\left({k}+\mathrm{1}\right)^{\mathrm{2}} ={k}^{\mathrm{3}} +\mathrm{2}{k}+\mathrm{3}{k}^{\mathrm{2}} +\mathrm{3}{k}^{\mathrm{2}} +\mathrm{9}{k}+\mathrm{6} \\ $$$$=\mathrm{3}{q}+\mathrm{3}\left({k}^{\mathrm{2}} +\mathrm{3}{k}+\mathrm{2}\right) \\ $$$$=\mathrm{3}\left({q}+{k}^{\mathrm{2}} +\mathrm{3}{k}+\mathrm{2}\right) \\ $$$${Thus}\:{p}\left({k}+\mathrm{1}\right)\:{is}\:{true},{whenever}\:{p}\left({k}\right)\:{is}\:{true} \\ $$$${Hence}\:{by}\:{the}\:{principle}\:{of}\:{mathematical}\:{induction}\:{p}\left({n}\right)\:{is}\:{true}\:{for}\:{all}\:{positive}\:{integers}\:{number}\:{n}. \\ $$

Commented by TawaTawa last updated on 28/Aug/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com