Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67524 by mathmax by abdo last updated on 28/Aug/19

prove that ∀z ∈C  we have  sinz =z Π_(n=1) ^∞ (1−(z^2 /(n^2 π^2 )))

$${prove}\:{that}\:\forall{z}\:\in{C}\:\:{we}\:{have} \\ $$$${sinz}\:={z}\:\prod_{{n}=\mathrm{1}} ^{\infty} \left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\right) \\ $$

Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19

The complement formulas give us   (π/(sin(πz)))=Γ(z)Γ(1−z)  Now  sin(πz)=(π/(Γ(z)Γ(1−z))) =(π/(−zΓ(z)Γ(−z)))   cause Γ(x+1)=xΓ(x)  knowing that  (1/(Γ(z)))= ze^(γz)  Π_(n=1) ^∞ (1+(z/n))e^(−(z/n))   (1/(Γ(z)Γ(−z)))= ze^(γz)  Π_(n=1) ^∞ (1+(z/n))e^(−(z/n))   . (−z)^ e^(γ(−z)) Π_(n=1) ^∞ (1+((−z)/n))e^(−((−z)/n))      =−z^2  Π_(n=1) ^∞ (1+(z/n))(1−(z/n))=−z^2  Π_(n=1) ^∞ (1−(z^2 /n^2 ))  So  sin(πz)=πzΠ_(n=1) ^∞ (1−(z^2 /n^2 ))    finally   with  w=πz   sin(w)=wΠ_(n=1) ^∞ (1−(w^2 /((nπ)^2 )))

$${The}\:{complement}\:{formulas}\:{give}\:{us}\:\:\:\frac{\pi}{{sin}\left(\pi{z}\right)}=\Gamma\left({z}\right)\Gamma\left(\mathrm{1}−{z}\right) \\ $$$${Now}\:\:{sin}\left(\pi{z}\right)=\frac{\pi}{\Gamma\left({z}\right)\Gamma\left(\mathrm{1}−{z}\right)}\:=\frac{\pi}{−{z}\Gamma\left({z}\right)\Gamma\left(−{z}\right)}\:\:\:{cause}\:\Gamma\left({x}+\mathrm{1}\right)={x}\Gamma\left({x}\right) \\ $$$${knowing}\:{that}\:\:\frac{\mathrm{1}}{\Gamma\left({z}\right)}=\:{ze}^{\gamma{z}} \:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{z}}{{n}}\right){e}^{−\frac{{z}}{{n}}} \\ $$$$\frac{\mathrm{1}}{\Gamma\left({z}\right)\Gamma\left(−{z}\right)}=\:{ze}^{\gamma{z}} \:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{z}}{{n}}\right){e}^{−\frac{{z}}{{n}}} \:\:.\:\left(−{z}\right)^{} {e}^{\gamma\left(−{z}\right)} \underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{−{z}}{{n}}\right){e}^{−\frac{−{z}}{{n}}} \\ $$$$\:\:\:=−{z}^{\mathrm{2}} \:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{z}}{{n}}\right)\left(\mathrm{1}−\frac{{z}}{{n}}\right)=−{z}^{\mathrm{2}} \:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right) \\ $$$${So}\:\:{sin}\left(\pi{z}\right)=\pi{z}\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)\:\: \\ $$$${finally}\:\:\:{with}\:\:{w}=\pi{z}\: \\ $$$${sin}\left({w}\right)={w}\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{w}^{\mathrm{2}} }{\left({n}\pi\right)^{\mathrm{2}} }\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com