Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 68063 by TawaTawa last updated on 04/Sep/19

Answered by MJS last updated on 04/Sep/19

tricky but easy  (1)  x^3 −3y^2 x=a+1  (2)  y^3 −3x^2 y=a  let 1−(x/y)=z ⇔ y=(x/(1−z)) this leads to  (1)  x^3 ((z^2 −2z−2)/((z−1)^2 ))=a+1 ⇒ x^3 =(((a+1)(z−1)^2 )/(z^2 −2z−2))  (2)  x^3 ((3z^2 −6z+2)/((z−1)^3 ))=a ⇒ x^3 =((a(z−1)^3 )/(3z^2 −6z+2))  ⇒  (((a+1)(z−1)^2 )/(z^2 −2z−2))=((a(z−1)^3 )/(3z^2 −6z+2))  transforming to  z^3 −((3(2a+1))/a)z^2 +((6(a+1))/a)z−(2/a)=0  let α, β, γ are the solutions of this  ⇒  (z−α)(z−β)(z−γ)=0  z^3 −(α+β+γ)z^2 +(αβ+αγ+βγ)z−αβγ=0  ⇒ by comparing factors αβγ=(2/a)  but αβγ=z_1 z_2 z_3 =(1−(x_1 /y_1 ))(1−(x_2 /y_2 ))(1−(x_3 /y_3 ))=(2/a)  in our case a=2009  ⇒  answer is (2/(2009))

$$\mathrm{tricky}\:\mathrm{but}\:\mathrm{easy} \\ $$$$\left(\mathrm{1}\right)\:\:{x}^{\mathrm{3}} −\mathrm{3}{y}^{\mathrm{2}} {x}={a}+\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\:{y}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} {y}={a} \\ $$$$\mathrm{let}\:\mathrm{1}−\frac{{x}}{{y}}={z}\:\Leftrightarrow\:{y}=\frac{{x}}{\mathrm{1}−{z}}\:\mathrm{this}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\left(\mathrm{1}\right)\:\:{x}^{\mathrm{3}} \frac{{z}^{\mathrm{2}} −\mathrm{2}{z}−\mathrm{2}}{\left({z}−\mathrm{1}\right)^{\mathrm{2}} }={a}+\mathrm{1}\:\Rightarrow\:{x}^{\mathrm{3}} =\frac{\left({a}+\mathrm{1}\right)\left({z}−\mathrm{1}\right)^{\mathrm{2}} }{{z}^{\mathrm{2}} −\mathrm{2}{z}−\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:\:{x}^{\mathrm{3}} \frac{\mathrm{3}{z}^{\mathrm{2}} −\mathrm{6}{z}+\mathrm{2}}{\left({z}−\mathrm{1}\right)^{\mathrm{3}} }={a}\:\Rightarrow\:{x}^{\mathrm{3}} =\frac{{a}\left({z}−\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{3}{z}^{\mathrm{2}} −\mathrm{6}{z}+\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\frac{\left({a}+\mathrm{1}\right)\left({z}−\mathrm{1}\right)^{\mathrm{2}} }{{z}^{\mathrm{2}} −\mathrm{2}{z}−\mathrm{2}}=\frac{{a}\left({z}−\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{3}{z}^{\mathrm{2}} −\mathrm{6}{z}+\mathrm{2}} \\ $$$$\mathrm{transforming}\:\mathrm{to} \\ $$$${z}^{\mathrm{3}} −\frac{\mathrm{3}\left(\mathrm{2}{a}+\mathrm{1}\right)}{{a}}{z}^{\mathrm{2}} +\frac{\mathrm{6}\left({a}+\mathrm{1}\right)}{{a}}{z}−\frac{\mathrm{2}}{{a}}=\mathrm{0} \\ $$$$\mathrm{let}\:\alpha,\:\beta,\:\gamma\:\mathrm{are}\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{this} \\ $$$$\Rightarrow \\ $$$$\left({z}−\alpha\right)\left({z}−\beta\right)\left({z}−\gamma\right)=\mathrm{0} \\ $$$${z}^{\mathrm{3}} −\left(\alpha+\beta+\gamma\right){z}^{\mathrm{2}} +\left(\alpha\beta+\alpha\gamma+\beta\gamma\right){z}−\alpha\beta\gamma=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{by}\:\mathrm{comparing}\:\mathrm{factors}\:\alpha\beta\gamma=\frac{\mathrm{2}}{{a}} \\ $$$$\mathrm{but}\:\alpha\beta\gamma={z}_{\mathrm{1}} {z}_{\mathrm{2}} {z}_{\mathrm{3}} =\left(\mathrm{1}−\frac{{x}_{\mathrm{1}} }{{y}_{\mathrm{1}} }\right)\left(\mathrm{1}−\frac{{x}_{\mathrm{2}} }{{y}_{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{{x}_{\mathrm{3}} }{{y}_{\mathrm{3}} }\right)=\frac{\mathrm{2}}{{a}} \\ $$$$\mathrm{in}\:\mathrm{our}\:\mathrm{case}\:{a}=\mathrm{2009} \\ $$$$\Rightarrow \\ $$$$\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{2}}{\mathrm{2009}} \\ $$

Commented by TawaTawa last updated on 04/Sep/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by Learner-123 last updated on 04/Sep/19

Amazing!

$${Amazing}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com