Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68868 by mathmax by abdo last updated on 16/Sep/19

find ∫    (dx/(a+cosx))  with a>0

$${find}\:\int\:\:\:\:\frac{{dx}}{{a}+{cosx}}\:\:{with}\:{a}>\mathrm{0} \\ $$

Commented bymathmax by abdo last updated on 17/Sep/19

let I = ∫  (dx/(a+cosx)) changement tan((x/2))=t give  I =∫   (1/(a+((1−t^2 )/(1+t^2 ))))((2dt)/(1+t^2 )) =∫     ((2dt)/(a+at^2 +1−t^2 )) =∫  ((2dt)/((a−1)t^2  +a+1))  =(2/(a−1)) ∫  (dt/(t^2  +((a+1)/(a−1))))    case 1    0<a<1 ⇒I =(2/(a−1))∫  (dt/(t^2 −((1+a)/(1−a))))  =(2/(a−1)) ∫   (dt/(t^2 −((√((1+a)/(1−a))))^2 )) =_(t=(√((1+a)/(1−a)))u)     (2/(a−1))((1−a)/(1+a)) ∫   (1/(u^2 −1))(√((1+a)/(1−a)))du  =(2/(1+a))×((√(1+a))/(√(1−a))) ∫((1/(u−1))−(1/(u+1)))du =(1/(√(1−a^2 ))) ln∣((u−1)/(u+1))∣  +c  =(1/(√(1−a^2 ))) ln∣(((√((1−a)/(1+a )))tan((x/2))−1)/((√((1−a)/(1+a)))tan((x/2)) +1))∣ +c  case 2   a>1 ⇒ I =_(t=(√((a+1)/(a−1)))u)    (2/(a−1))((a−1)/(a+1)) ∫   (1/(u^2 +1))(√((a+1)/(a−1)))du  =(2/(√(a^2 −1))) arctan(u)+c =(2/(√(a^2 −1))) arctan((√((a−1)/(a+1)))t) +c .

$${let}\:{I}\:=\:\int\:\:\frac{{dx}}{{a}+{cosx}}\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$ $${I}\:=\int\:\:\:\frac{\mathrm{1}}{{a}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\int\:\:\:\:\:\frac{\mathrm{2}{dt}}{{a}+{at}^{\mathrm{2}} +\mathrm{1}−{t}^{\mathrm{2}} }\:=\int\:\:\frac{\mathrm{2}{dt}}{\left({a}−\mathrm{1}\right){t}^{\mathrm{2}} \:+{a}+\mathrm{1}} \\ $$ $$=\frac{\mathrm{2}}{{a}−\mathrm{1}}\:\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}}\:\:\:\:{case}\:\mathrm{1}\:\:\:\:\mathrm{0}<{a}<\mathrm{1}\:\Rightarrow{I}\:=\frac{\mathrm{2}}{{a}−\mathrm{1}}\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}} \\ $$ $$=\frac{\mathrm{2}}{{a}−\mathrm{1}}\:\int\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\left(\sqrt{\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}}\right)^{\mathrm{2}} }\:=_{{t}=\sqrt{\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}}{u}} \:\:\:\:\frac{\mathrm{2}}{{a}−\mathrm{1}}\frac{\mathrm{1}−{a}}{\mathrm{1}+{a}}\:\int\:\:\:\frac{\mathrm{1}}{{u}^{\mathrm{2}} −\mathrm{1}}\sqrt{\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}}{du} \\ $$ $$=\frac{\mathrm{2}}{\mathrm{1}+{a}}×\frac{\sqrt{\mathrm{1}+{a}}}{\sqrt{\mathrm{1}−{a}}}\:\int\left(\frac{\mathrm{1}}{{u}−\mathrm{1}}−\frac{\mathrm{1}}{{u}+\mathrm{1}}\right){du}\:=\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }}\:{ln}\mid\frac{{u}−\mathrm{1}}{{u}+\mathrm{1}}\mid\:\:+{c} \\ $$ $$=\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }}\:{ln}\mid\frac{\sqrt{\frac{\mathrm{1}−{a}}{\mathrm{1}+{a}\:}}{tan}\left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{1}}{\sqrt{\frac{\mathrm{1}−{a}}{\mathrm{1}+{a}}}{tan}\left(\frac{{x}}{\mathrm{2}}\right)\:+\mathrm{1}}\mid\:+{c} \\ $$ $${case}\:\mathrm{2}\:\:\:{a}>\mathrm{1}\:\Rightarrow\:{I}\:=_{{t}=\sqrt{\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}}{u}} \:\:\:\frac{\mathrm{2}}{{a}−\mathrm{1}}\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}}\:\int\:\:\:\frac{\mathrm{1}}{{u}^{\mathrm{2}} +\mathrm{1}}\sqrt{\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}}{du} \\ $$ $$=\frac{\mathrm{2}}{\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\:{arctan}\left({u}\right)+{c}\:=\frac{\mathrm{2}}{\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\:{arctan}\left(\sqrt{\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}}}{t}\right)\:+{c}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com