Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 69385 by Maclaurin Stickker last updated on 23/Sep/19

Answered by Maclaurin Stickker last updated on 23/Sep/19

There is another way to solve this  question just using algebra:  ((FD)/1)=(x/(x+1))⇒FD=(x/(x+1)) Now we can use  Pythagorean theorem on △FDE:  FD^2 +DE^2 =FE^2 ⇒(x^2 /((x+1)^2 ))+x^2 =1  ⇒Now we can multiply the sides by (x+1)^2 :  x^2 +x^2 (x+1)^2 =(x+1)^2 ⇒(x(x+1))^2 =(x+1)^2 −x^2   Now we can use the formula (a+b)^2 =a^2 +2ab+b^2   It is square completion.  let b=1 and a=x(x+1)  (x(x+1))^2 +2x(x+1)1+1^2 =(x+1)^2 −x^2 +2x(x+1)1+1^2   We can convert the first expression  to a perfect square trinomial  (x^2 +x+1)^2 =x^2 +2x+1−x^2 +2x(x+1)+1  ⇒(x^2 +x+1)^2 =2x^2 +4x+2  ⇒(x^2 +x+1)^2 =2(x^2 +2x+1)  (x^2 +x+1)^2 =2(x+1)^2 ⇒x^2 +x+1=(√(2(x+1)^2 ))  ⇒x^2 +x+1=(x+1)(√(2 ))  ⇒x^2 +x+1=x(√2)+(√2)  ⇒x^2 +x+1−x(√2)−(√2)=0  ⇒x^2 +(1−(√2))x+1−(√2)=0  Using quadratic formula, we have:  x=((−(1−(√2))±(√((1−(√2))^2 −4.1.(1−(√2)))))/2)  ⇒x=((−1+(√2)±(√(−1−2(√2)+4(√2))))/2)  ⇒x_1 =((−1+(√2)+(√(−1+2(√2))))/2) and x_2 =((−1+(√2)−(√(−1+2(√2))))/2)  x_(2 )  is negative, then the answer is  x_1 =((−1+(√2)+(√(−1+2(√2))))/2)≈0.883204

$${There}\:{is}\:{another}\:{way}\:{to}\:{solve}\:{this} \\ $$$${question}\:{just}\:{using}\:{algebra}: \\ $$$$\frac{{FD}}{\mathrm{1}}=\frac{{x}}{{x}+\mathrm{1}}\Rightarrow{FD}=\frac{{x}}{{x}+\mathrm{1}}\:{Now}\:{we}\:{can}\:{use} \\ $$$${Pythagorean}\:{theorem}\:{on}\:\bigtriangleup{FDE}: \\ $$$${FD}^{\mathrm{2}} +{DE}^{\mathrm{2}} ={FE}^{\mathrm{2}} \Rightarrow\frac{{x}^{\mathrm{2}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }+{x}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow{Now}\:{we}\:{can}\:{multiply}\:{the}\:{sides}\:{by}\:\left({x}+\mathrm{1}\right)^{\mathrm{2}} : \\ $$$${x}^{\mathrm{2}} +{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} =\left({x}+\mathrm{1}\right)^{\mathrm{2}} \Rightarrow\left({x}\left({x}+\mathrm{1}\right)\right)^{\mathrm{2}} =\left({x}+\mathrm{1}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} \\ $$$${Now}\:{we}\:{can}\:{use}\:{the}\:{formula}\:\left({a}+{b}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +\mathrm{2}{ab}+{b}^{\mathrm{2}} \\ $$$${It}\:{is}\:{square}\:{completion}. \\ $$$${let}\:{b}=\mathrm{1}\:{and}\:{a}={x}\left({x}+\mathrm{1}\right) \\ $$$$\left({x}\left({x}+\mathrm{1}\right)\right)^{\mathrm{2}} +\mathrm{2}{x}\left({x}+\mathrm{1}\right)\mathrm{1}+\mathrm{1}^{\mathrm{2}} =\left({x}+\mathrm{1}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} +\mathrm{2}{x}\left({x}+\mathrm{1}\right)\mathrm{1}+\mathrm{1}^{\mathrm{2}} \\ $$$${We}\:{can}\:{convert}\:{the}\:{first}\:{expression} \\ $$$${to}\:{a}\:{perfect}\:{square}\:{trinomial} \\ $$$$\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}−{x}^{\mathrm{2}} +\mathrm{2}{x}\left({x}+\mathrm{1}\right)+\mathrm{1} \\ $$$$\Rightarrow\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2} \\ $$$$\Rightarrow\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}\right) \\ $$$$\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}\left({x}+\mathrm{1}\right)^{\mathrm{2}} \Rightarrow{x}^{\mathrm{2}} +{x}+\mathrm{1}=\sqrt{\mathrm{2}\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{x}+\mathrm{1}=\left({x}+\mathrm{1}\right)\sqrt{\mathrm{2}\:} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{x}+\mathrm{1}={x}\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{x}+\mathrm{1}−{x}\sqrt{\mathrm{2}}−\sqrt{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\left(\mathrm{1}−\sqrt{\mathrm{2}}\right){x}+\mathrm{1}−\sqrt{\mathrm{2}}=\mathrm{0} \\ $$$${Using}\:{quadratic}\:{formula},\:{we}\:{have}: \\ $$$${x}=\frac{−\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\pm\sqrt{\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{4}.\mathrm{1}.\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\frac{−\mathrm{1}+\sqrt{\mathrm{2}}\pm\sqrt{−\mathrm{1}−\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{4}\sqrt{\mathrm{2}}}}{\mathrm{2}} \\ $$$$\Rightarrow{x}_{\mathrm{1}} =\frac{−\mathrm{1}+\sqrt{\mathrm{2}}+\sqrt{−\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{2}}\:{and}\:{x}_{\mathrm{2}} =\frac{−\mathrm{1}+\sqrt{\mathrm{2}}−\sqrt{−\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{2}} \\ $$$${x}_{\mathrm{2}\:} \:{is}\:{negative},\:{then}\:{the}\:{answer}\:{is} \\ $$$${x}_{\mathrm{1}} =\frac{−\mathrm{1}+\sqrt{\mathrm{2}}+\sqrt{−\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{2}}\approx\mathrm{0}.\mathrm{883204} \\ $$$$ \\ $$

Answered by MJS last updated on 23/Sep/19

coordinate method  let x=q to not get confused with x, y coordinates  A= ((0),(0) )  B= ((0),(1) )  C= ((1),(1) )  D= ((1),(0) )  E= (((1+q)),(0) )  line BE: y=−(1/(q+1))x+1  F∈BE ⇒ F= ((1),((q/(q+1))) )  ∣EF∣^2 =1  q^2 +(q^2 /((q+1)^2 ))=1  q^4 +2q^3 +q^2 −2q−1=0  q=t−(1/2)  t^4 −(1/2)t^2 −2t+(1/(16))=0  (t^2 −(√2)t+((3−2(√2))/4))(t^2 +(√2)t+((3+2(√2))/4))=0  ⇒ t=((√2)/2)±((√(−1+2(√2)))/2)  x>0  ⇒ x=−((1+(√2)+(√(−1+2(√2))))/2)

$$\mathrm{coordinate}\:\mathrm{method} \\ $$$$\mathrm{let}\:{x}={q}\:\mathrm{to}\:\mathrm{not}\:\mathrm{get}\:\mathrm{confused}\:\mathrm{with}\:{x},\:{y}\:\mathrm{coordinates} \\ $$$${A}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{1}}\end{pmatrix}\:\:{C}=\begin{pmatrix}{\mathrm{1}}\\{\mathrm{1}}\end{pmatrix}\:\:{D}=\begin{pmatrix}{\mathrm{1}}\\{\mathrm{0}}\end{pmatrix} \\ $$$${E}=\begin{pmatrix}{\mathrm{1}+{q}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\mathrm{line}\:{BE}:\:{y}=−\frac{\mathrm{1}}{{q}+\mathrm{1}}{x}+\mathrm{1} \\ $$$${F}\in{BE}\:\Rightarrow\:{F}=\begin{pmatrix}{\mathrm{1}}\\{\frac{{q}}{{q}+\mathrm{1}}}\end{pmatrix} \\ $$$$\mid{EF}\mid^{\mathrm{2}} =\mathrm{1} \\ $$$${q}^{\mathrm{2}} +\frac{{q}^{\mathrm{2}} }{\left({q}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{1} \\ $$$${q}^{\mathrm{4}} +\mathrm{2}{q}^{\mathrm{3}} +{q}^{\mathrm{2}} −\mathrm{2}{q}−\mathrm{1}=\mathrm{0} \\ $$$${q}={t}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${t}^{\mathrm{4}} −\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} −\mathrm{2}{t}+\frac{\mathrm{1}}{\mathrm{16}}=\mathrm{0} \\ $$$$\left({t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}+\frac{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{4}}\right)\left({t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}+\frac{\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{4}}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{t}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\pm\frac{\sqrt{−\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{2}} \\ $$$${x}>\mathrm{0} \\ $$$$\Rightarrow\:{x}=−\frac{\mathrm{1}+\sqrt{\mathrm{2}}+\sqrt{−\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{2}} \\ $$

Commented by Mr. K last updated on 23/Sep/19

Great!

$${Great}! \\ $$

Commented by MJS last updated on 23/Sep/19

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com