Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 69795 by mathmax by abdo last updated on 27/Sep/19

let p(x)=(x+in)^n −n^n  with n integr natural  1) find the roots of p(x)  2)factorize p(x) inside C[x]  3) decompose the fraction F(x)=(1/(p(x)))

$${let}\:{p}\left({x}\right)=\left({x}+{in}\right)^{{n}} −{n}^{{n}} \:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)} \\ $$

Commented by mathmax by abdo last updated on 29/Sep/19

1)p(x)=0 ⇔(x+in)^n =n^n  ⇔(((x+in)^n )/n^n ) =1 ⇔(((x+in)/n))^n =1   ⇔((x/n)+i)^n =1  let z =(x/n)+i    (e)⇒z^n =1 ⇒z^n =e^(i(2kπ))  ⇒  z_k =e^((i2kπ)/n)   with k∈[[0,n−1]]   so we get nz_k =x_k +ni ⇒  x_k =n(z_k −i) =n(e^((i2kπ)/n) −i)    with0≤k≤n−1  2)  p(x) =aΠ_(k=0) ^(n−1) (x−x_k ) =aΠ_(k=0) ^(n−1) (x+ni−ne^((i2kπ)/n) )  we have p(x)=Σ_(k=0) ^n  C_n ^k  x^k (in)^(n−k)  −n^n   k=n ⇒a =C_n ^n  (in)^0 =1 ⇒p(x)=Π_(k=0) ^(n−1) (x+ni−ne^((i2kπ)/n) )  3) F(x)=(1/(p(x))) =(1/(Π_(k=0) ^(n−1) (x−x_k ))) =Σ_(k=0) ^(n−1)   (λ_k /(x−x_k ))  λ_k =(1/(p^′ (x_k )))

$$\left.\mathrm{1}\right){p}\left({x}\right)=\mathrm{0}\:\Leftrightarrow\left({x}+{in}\right)^{{n}} ={n}^{{n}} \:\Leftrightarrow\frac{\left({x}+{in}\right)^{{n}} }{{n}^{{n}} }\:=\mathrm{1}\:\Leftrightarrow\left(\frac{{x}+{in}}{{n}}\right)^{{n}} =\mathrm{1}\: \\ $$$$\Leftrightarrow\left(\frac{{x}}{{n}}+{i}\right)^{{n}} =\mathrm{1}\:\:{let}\:{z}\:=\frac{{x}}{{n}}+{i}\:\:\:\:\left({e}\right)\Rightarrow{z}^{{n}} =\mathrm{1}\:\Rightarrow{z}^{{n}} ={e}^{{i}\left(\mathrm{2}{k}\pi\right)} \:\Rightarrow \\ $$$${z}_{{k}} ={e}^{\frac{{i}\mathrm{2}{k}\pi}{{n}}} \:\:{with}\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]\:\:\:{so}\:{we}\:{get}\:{nz}_{{k}} ={x}_{{k}} +{ni}\:\Rightarrow \\ $$$${x}_{{k}} ={n}\left({z}_{{k}} −{i}\right)\:={n}\left({e}^{\frac{{i}\mathrm{2}{k}\pi}{{n}}} −{i}\right)\:\:\:\:{with}\mathrm{0}\leqslant{k}\leqslant{n}−\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:\:{p}\left({x}\right)\:={a}\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−{x}_{{k}} \right)\:={a}\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}+{ni}−{ne}^{\frac{{i}\mathrm{2}{k}\pi}{{n}}} \right) \\ $$$${we}\:{have}\:{p}\left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{{k}} \left({in}\right)^{{n}−{k}} \:−{n}^{{n}} \\ $$$${k}={n}\:\Rightarrow{a}\:={C}_{{n}} ^{{n}} \:\left({in}\right)^{\mathrm{0}} =\mathrm{1}\:\Rightarrow{p}\left({x}\right)=\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}+{ni}−{ne}^{\frac{{i}\mathrm{2}{k}\pi}{{n}}} \right) \\ $$$$\left.\mathrm{3}\right)\:{F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)}\:=\frac{\mathrm{1}}{\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−{x}_{{k}} \right)}\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\lambda_{{k}} }{{x}−{x}_{{k}} } \\ $$$$\lambda_{{k}} =\frac{\mathrm{1}}{{p}^{'} \left({x}_{{k}} \right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com