Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 7026 by Tawakalitu. last updated on 07/Aug/16

Commented by Yozzii last updated on 07/Aug/16

Write ∫((sinx+cosx)/(sin^4 x+cos^4 x))dx=∫((sinx)/(sin^4 x+cos^4 x))dx+∫((cosx)/(sin^4 x+cos^4 x))dx.  Evaluate each integral by the following steps  (1) Substitute u=cosx in ∫((sinx)/(sin^4 x+cos^4 x))dx  where sin^4 x+cos^4 x=2cos^4 x−2cos^2 x+1,   {and substitute k=sinx in ∫((cosx)/(sin^4 x+cos^4 x))dx  where sin^4 x+cos^4 x=2sin^4 x−2sin^2 x+1.}  (2) Complete the square in the denominators of  the resulting integrand.  e.g 2u^4 −2u^2 +1=0.5((2u^2 −1)^2 +1).  (3)Apply the identity z^2 +1=(z−i)(z+i)  with z=2u^2 −1 for the first integrand   for example.  ⇒(2u^2 −1)^2 +1=(2u^2 −1−i)(2u^2 −1+i)  or (2u^2 −1)^2 +1=((√2)u−(√(1+i)))((√2)u+(√(1+i)))(2u^2 −1+i)  (4)Split (2/((2u^2 −1)^2 +1)) into partial fractions.  Solve for a,b,c,d∈C in  (2/((2u^2 −1)^2 +1))≡(a/((√2)u−(√(1+i))))+(b/((√2)u+(√(1+i))))+((cu+d)/(2u^2 +i−1))  (5)Then integrate and simplify as usual  e.g: ∫((sinx)/(sin^4 x+cos^4 x))dx=−∫{(a/((√2)u−(√(1+i))))+(b/((√2)u+(√(1+i))))+((cu+d)/(2u^2 +i−1))}du=−F(u)+C=−F(cosx)+C  where (d/du)F(u)=(a/((√2)u−(√(1+i))))+(b/((√2)u+(√(1+i))))+((cu+d)/(2u^2 +i−1)).  −−−−−−−−−−−−−−−−−−−−−−−−−−  For ∫((cosx)/(sin^4 x+cos^4 x))dx, this turns out to be  ∫((cosx)/(sin^4 x+cos^4 x))dx=F(k)+T=F(sinx)+T  ∴ ∫((sinx+cosx)/(sin^4 x+cos^4 x))dx=F(sinx)−F(cosx)+constant.

$${Write}\:\int\frac{{sinx}+{cosx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}=\int\frac{{sinx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}+\int\frac{{cosx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}. \\ $$$${Evaluate}\:{each}\:{integral}\:{by}\:{the}\:{following}\:{steps} \\ $$$$\left(\mathrm{1}\right)\:{Substitute}\:{u}={cosx}\:{in}\:\int\frac{{sinx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx} \\ $$$${where}\:{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}=\mathrm{2}{cos}^{\mathrm{4}} {x}−\mathrm{2}{cos}^{\mathrm{2}} {x}+\mathrm{1},\: \\ $$$$\left\{{and}\:{substitute}\:{k}={sinx}\:{in}\:\int\frac{{cosx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}\right. \\ $$$$\left.{where}\:{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}=\mathrm{2}{sin}^{\mathrm{4}} {x}−\mathrm{2}{sin}^{\mathrm{2}} {x}+\mathrm{1}.\right\} \\ $$$$\left(\mathrm{2}\right)\:{Complete}\:{the}\:{square}\:{in}\:{the}\:{denominators}\:{of} \\ $$$${the}\:{resulting}\:{integrand}. \\ $$$${e}.{g}\:\mathrm{2}{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} +\mathrm{1}=\mathrm{0}.\mathrm{5}\left(\left(\mathrm{2}{u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}\right). \\ $$$$\left(\mathrm{3}\right){Apply}\:{the}\:{identity}\:{z}^{\mathrm{2}} +\mathrm{1}=\left({z}−{i}\right)\left({z}+{i}\right) \\ $$$${with}\:{z}=\mathrm{2}{u}^{\mathrm{2}} −\mathrm{1}\:{for}\:{the}\:{first}\:{integrand}\: \\ $$$${for}\:{example}. \\ $$$$\Rightarrow\left(\mathrm{2}{u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}=\left(\mathrm{2}{u}^{\mathrm{2}} −\mathrm{1}−{i}\right)\left(\mathrm{2}{u}^{\mathrm{2}} −\mathrm{1}+{i}\right) \\ $$$${or}\:\left(\mathrm{2}{u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}=\left(\sqrt{\mathrm{2}}{u}−\sqrt{\mathrm{1}+{i}}\right)\left(\sqrt{\mathrm{2}}{u}+\sqrt{\mathrm{1}+{i}}\right)\left(\mathrm{2}{u}^{\mathrm{2}} −\mathrm{1}+{i}\right) \\ $$$$\left(\mathrm{4}\right){Split}\:\frac{\mathrm{2}}{\left(\mathrm{2}{u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}\:{into}\:{partial}\:{fractions}. \\ $$$${Solve}\:{for}\:{a},{b},{c},{d}\in\mathbb{C}\:{in} \\ $$$$\frac{\mathrm{2}}{\left(\mathrm{2}{u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}\equiv\frac{{a}}{\sqrt{\mathrm{2}}{u}−\sqrt{\mathrm{1}+{i}}}+\frac{{b}}{\sqrt{\mathrm{2}}{u}+\sqrt{\mathrm{1}+{i}}}+\frac{{cu}+{d}}{\mathrm{2}{u}^{\mathrm{2}} +{i}−\mathrm{1}} \\ $$$$\left(\mathrm{5}\right){Then}\:{integrate}\:{and}\:{simplify}\:{as}\:{usual} \\ $$$${e}.{g}:\:\int\frac{{sinx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}=−\int\left\{\frac{{a}}{\sqrt{\mathrm{2}}{u}−\sqrt{\mathrm{1}+{i}}}+\frac{{b}}{\sqrt{\mathrm{2}}{u}+\sqrt{\mathrm{1}+{i}}}+\frac{{cu}+{d}}{\mathrm{2}{u}^{\mathrm{2}} +{i}−\mathrm{1}}\right\}{du}=−{F}\left({u}\right)+{C}=−{F}\left({cosx}\right)+{C} \\ $$$${where}\:\frac{{d}}{{du}}{F}\left({u}\right)=\frac{{a}}{\sqrt{\mathrm{2}}{u}−\sqrt{\mathrm{1}+{i}}}+\frac{{b}}{\sqrt{\mathrm{2}}{u}+\sqrt{\mathrm{1}+{i}}}+\frac{{cu}+{d}}{\mathrm{2}{u}^{\mathrm{2}} +{i}−\mathrm{1}}. \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${For}\:\int\frac{{cosx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx},\:{this}\:{turns}\:{out}\:{to}\:{be} \\ $$$$\int\frac{{cosx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}={F}\left({k}\right)+{T}={F}\left({sinx}\right)+{T} \\ $$$$\therefore\:\int\frac{{sinx}+{cosx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}={F}\left({sinx}\right)−{F}\left({cosx}\right)+{constant}. \\ $$

Commented by Tawakalitu. last updated on 07/Aug/16

Wow... Thanks so much ... i really appreciate.

$${Wow}...\:{Thanks}\:{so}\:{much}\:...\:{i}\:{really}\:{appreciate}. \\ $$

Commented by Tawakalitu. last updated on 07/Aug/16

I really appreciate your effort.

$${I}\:{really}\:{appreciate}\:{your}\:{effort}. \\ $$

Commented by Tawakalitu. last updated on 07/Aug/16

Commented by Tawakalitu. last updated on 07/Aug/16

Thank you very much.

$${Thank}\:{you}\:{very}\:{much}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com