Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 7040 by FilupSmith last updated on 07/Aug/16

f(x,y)=ax^2 +by^2   How do you find where the gradient  is zero for multivariable funtions?

$${f}\left({x},{y}\right)={ax}^{\mathrm{2}} +{by}^{\mathrm{2}} \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{find}\:\mathrm{where}\:\mathrm{the}\:\mathrm{gradient} \\ $$$$\mathrm{is}\:\mathrm{zero}\:\mathrm{for}\:\mathrm{multivariable}\:\mathrm{funtions}? \\ $$

Commented by Yozzii last updated on 07/Aug/16

▽f=grad f= (((∂f/∂x)),((∂f/∂y)) )  At stationary points, ▽f=0_−   ∴ (∂f/∂x)=0  and (∂f/∂y)=0 simultaneously at some (x,y)  For f(x,y)=ax^2 +by^2 , ▽f=0_−  at x=y=0.  There is also the directional derivative of f  u^� •(▽f) at a point (x,y) in the direction  of the unit vector u^�  in the x−y plane.  u^� • (((∂f/∂x)),((∂f/∂y)) )  gives the gradienti of  the surface of f in the direction of u^� .

$$\bigtriangledown{f}={grad}\:{f}=\begin{pmatrix}{\frac{\partial{f}}{\partial{x}}}\\{\frac{\partial{f}}{\partial{y}}}\end{pmatrix} \\ $$$${At}\:{stationary}\:{points},\:\bigtriangledown{f}=\underset{−} {\mathrm{0}} \\ $$$$\therefore\:\frac{\partial{f}}{\partial{x}}=\mathrm{0}\:\:{and}\:\frac{\partial{f}}{\partial{y}}=\mathrm{0}\:{simultaneously}\:{at}\:{some}\:\left({x},{y}\right) \\ $$$${For}\:{f}\left({x},{y}\right)={ax}^{\mathrm{2}} +{by}^{\mathrm{2}} ,\:\bigtriangledown{f}=\underset{−} {\mathrm{0}}\:{at}\:{x}={y}=\mathrm{0}. \\ $$$${There}\:{is}\:{also}\:{the}\:{directional}\:{derivative}\:{of}\:{f} \\ $$$$\hat {\boldsymbol{{u}}}\bullet\left(\bigtriangledown{f}\right)\:{at}\:{a}\:{point}\:\left({x},{y}\right)\:{in}\:{the}\:{direction} \\ $$$${of}\:{the}\:{unit}\:{vector}\:\hat {\boldsymbol{{u}}}\:{in}\:{the}\:{x}−{y}\:{plane}. \\ $$$$\hat {\boldsymbol{{u}}}\bullet\begin{pmatrix}{\partial{f}/\partial{x}}\\{\partial{f}/\partial{y}}\end{pmatrix}\:\:{gives}\:{the}\:{gradienti}\:{of} \\ $$$${the}\:{surface}\:{of}\:{f}\:{in}\:{the}\:{direction}\:{of}\:\hat {\boldsymbol{{u}}}. \\ $$

Commented by FilupSmith last updated on 07/Aug/16

This is extremely interesting!  I′ll have to learn this area of mathematics!

$$\mathrm{This}\:\mathrm{is}\:\mathrm{extremely}\:\mathrm{interesting}! \\ $$$$\mathrm{I}'\mathrm{ll}\:\mathrm{have}\:\mathrm{to}\:\mathrm{learn}\:\mathrm{this}\:\mathrm{area}\:\mathrm{of}\:\mathrm{mathematics}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com