Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 70704 by 20190927 last updated on 07/Oct/19

z^4 −2z^2 +2=0

$$\mathrm{z}^{\mathrm{4}} −\mathrm{2z}^{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$

Commented by mathmax by abdo last updated on 08/Oct/19

z^4 −2z^2 +2 =0 ⇒t^2 −2t+2=0  with t=z^2   Δ^′ =1−2=−1 ⇒t_1 =1+i and t_2 =1−i  t_1 =(√2)e^((iπ)/4)   and t_2 =(√2)e^(−((iπ)/4))    z^2 =t_1  ⇒z=+^− (√t_1 )=+^− (^4 (√2))e^((iπ)/8)   z^2 =t_2  ⇒z =+^− (√t_2 )=+^− (^4 (√2))e^(−((iπ)/8))  so the roots are +^− (^4 (√2))e^((iπ)/8)   and +^− (^4 (√2))e^(−((iπ)/8))    also the factorization is  z^4 −2z^2  +2 =(z−(^4 (√2))e^((iπ)/8) )(z+^4 (√2)e^((iπ)/8) )(z−^4 (√2)e^(−((iπ)/8)) )(z+^4 (√2)e^(−((iπ)/8)) )

$${z}^{\mathrm{4}} −\mathrm{2}{z}^{\mathrm{2}} +\mathrm{2}\:=\mathrm{0}\:\Rightarrow{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{2}=\mathrm{0}\:\:{with}\:{t}={z}^{\mathrm{2}} \\ $$$$\Delta^{'} =\mathrm{1}−\mathrm{2}=−\mathrm{1}\:\Rightarrow{t}_{\mathrm{1}} =\mathrm{1}+{i}\:{and}\:{t}_{\mathrm{2}} =\mathrm{1}−{i} \\ $$$${t}_{\mathrm{1}} =\sqrt{\mathrm{2}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \:\:{and}\:{t}_{\mathrm{2}} =\sqrt{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \: \\ $$$${z}^{\mathrm{2}} ={t}_{\mathrm{1}} \:\Rightarrow{z}=\overset{−} {+}\sqrt{{t}_{\mathrm{1}} }=\overset{−} {+}\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right){e}^{\frac{{i}\pi}{\mathrm{8}}} \\ $$$${z}^{\mathrm{2}} ={t}_{\mathrm{2}} \:\Rightarrow{z}\:=\overset{−} {+}\sqrt{{t}_{\mathrm{2}} }=\overset{−} {+}\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right){e}^{−\frac{{i}\pi}{\mathrm{8}}} \:{so}\:{the}\:{roots}\:{are}\:\overset{−} {+}\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right){e}^{\frac{{i}\pi}{\mathrm{8}}} \\ $$$${and}\:\overset{−} {+}\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right){e}^{−\frac{{i}\pi}{\mathrm{8}}} \:\:\:{also}\:{the}\:{factorization}\:{is} \\ $$$${z}^{\mathrm{4}} −\mathrm{2}{z}^{\mathrm{2}} \:+\mathrm{2}\:=\left({z}−\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right){e}^{\frac{{i}\pi}{\mathrm{8}}} \right)\left({z}+^{\mathrm{4}} \sqrt{\mathrm{2}}{e}^{\frac{{i}\pi}{\mathrm{8}}} \right)\left({z}−^{\mathrm{4}} \sqrt{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{8}}} \right)\left({z}+^{\mathrm{4}} \sqrt{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{8}}} \right) \\ $$

Commented by 20190927 last updated on 09/Oct/19

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by Rasheed.Sindhi last updated on 07/Oct/19

z^4 −2z^2 +2=0  (z^2 )^2 −2z^2 +2=0  z^2 =y⇒y^2 −2y+2=0     y=((−(−2)±(√((−2)^2 −4(1)(2))))/(2(1)))       =((2±(√((4−8)))/2)=((2±(√(−4)))/2)=((2±2i)/2)    y=1±i   z^2 =1±i  z=±(√(1±i))

$$\mathrm{z}^{\mathrm{4}} −\mathrm{2z}^{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$$$\left({z}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}{z}^{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$$${z}^{\mathrm{2}} ={y}\Rightarrow{y}^{\mathrm{2}} −\mathrm{2}{y}+\mathrm{2}=\mathrm{0} \\ $$$$\:\:\:{y}=\frac{−\left(−\mathrm{2}\right)\pm\sqrt{\left(−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}\right)\left(\mathrm{2}\right)}}{\mathrm{2}\left(\mathrm{1}\right)} \\ $$$$\:\:\:\:\:=\frac{\mathrm{2}\pm\sqrt{\left(\mathrm{4}−\mathrm{8}\right.}}{\mathrm{2}}=\frac{\mathrm{2}\pm\sqrt{−\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{2}\pm\mathrm{2}{i}}{\mathrm{2}} \\ $$$$\:\:{y}=\mathrm{1}\pm{i} \\ $$$$\:{z}^{\mathrm{2}} =\mathrm{1}\pm{i} \\ $$$${z}=\pm\sqrt{\mathrm{1}\pm{i}} \\ $$

Commented by 20190927 last updated on 09/Oct/19

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com