Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 709 by malwaan last updated on 03/Mar/15

find the integral in five different ways  ∫[(x^2 −1)(x+1)]^(−(2/3)) dx

$${find}\:{the}\:{integral}\:{in}\:{five}\:{different}\:{ways} \\ $$$$\int\left[\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}+\mathrm{1}\right)\right]^{−\frac{\mathrm{2}}{\mathrm{3}}} {dx} \\ $$

Answered by prakash jain last updated on 03/Mar/15

One solution  (1/([(x^2 −1)(x+1)]^(2/3) ))=(1/([(x−1)(x+1)^2 ]^(2/3) ))  =(1/((x−1)^(2/3) (x+1)^(1/3) (x+1)))  =[((x+1)/(x−1))]^(2/3) ∙(1/((x+1)^2 ))  ((x−1)/(x+1))=t⇒(2/((x+1)^2 ))dx=dt  Integral becomrs  ∫ t^(−2/3) ∙(dt/2)= (t^(1/3) /(1/3)) ∙(1/2)=(3/2)t^(1/3) =(3/2)[((x−1)/(x+1))]^(1/3)   =(3/2)(((x−1)/(x+1)))^(1/3)

$$\mathrm{One}\:\mathrm{solution} \\ $$$$\frac{\mathrm{1}}{\left[\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}+\mathrm{1}\right)\right]^{\mathrm{2}/\mathrm{3}} }=\frac{\mathrm{1}}{\left[\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)^{\mathrm{2}} \right]^{\mathrm{2}/\mathrm{3}} } \\ $$$$=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}/\mathrm{3}} \left({x}+\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} \left({x}+\mathrm{1}\right)} \\ $$$$=\left[\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right]^{\mathrm{2}/\mathrm{3}} \centerdot\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}={t}\Rightarrow\frac{\mathrm{2}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}={dt} \\ $$$$\mathrm{Integral}\:\mathrm{becomrs} \\ $$$$\int\:{t}^{−\mathrm{2}/\mathrm{3}} \centerdot\frac{{dt}}{\mathrm{2}}=\:\frac{{t}^{\mathrm{1}/\mathrm{3}} }{\mathrm{1}/\mathrm{3}}\:\centerdot\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}{t}^{\mathrm{1}/\mathrm{3}} =\frac{\mathrm{3}}{\mathrm{2}}\left[\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right]^{\mathrm{1}/\mathrm{3}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\sqrt[{\mathrm{3}}]{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}} \\ $$

Commented by malwaan last updated on 03/Mar/15

thank you mr prakash   and if you have another solution  please send it.

$${thank}\:{you}\:{mr}\:{prakash}\: \\ $$$${and}\:{if}\:{you}\:{have}\:{another}\:{solution} \\ $$$${please}\:{send}\:{it}. \\ $$

Commented by prakash jain last updated on 03/Mar/15

Note: result is valid only when the function               [(x^2 −1)(x+1)]^(−2/3)   takes real values. Some properties of exponents  arr not valid for complex numbers.

$$\mathrm{Note}:\:\mathrm{result}\:\mathrm{is}\:\mathrm{valid}\:\mathrm{only}\:\mathrm{when}\:\mathrm{the}\:\mathrm{function} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}+\mathrm{1}\right)\right]^{−\mathrm{2}/\mathrm{3}} \\ $$$$\mathrm{takes}\:\mathrm{real}\:\mathrm{values}.\:\mathrm{Some}\:\mathrm{properties}\:\mathrm{of}\:\mathrm{exponents} \\ $$$$\mathrm{arr}\:\mathrm{not}\:\mathrm{valid}\:\mathrm{for}\:\mathrm{complex}\:\mathrm{numbers}. \\ $$

Answered by prakash jain last updated on 03/Mar/15

x=tan^2 θ  dx=2tan θ sec^2 θ dθ  [(x^2 −1)(x+1)]^(−2/3)   =[(tan^4 θ−1)(tan^2 θ+1)]^(−2/3)   =[(tan^2 θ−1)sec^2 θsec^2 θ]^(−2/3)   =[(((sin^2 θ−cos^2 θ)/(cos^2 θ)))sec^4 θ]^(−2/3)   =[−cos 2θ∙sec^6 θ]^(−2/3) =(cos 2θ)^(−2/3) (sec θ)^(−4)   Integral  ∫(−cos 2θ)^(−2/3) (sec θ)^(−4)  2 tan θ sec^2 θ dθ  ∫(−cos 2θ)^(−2/3) (2 ((tan θ)/(sec^2 θ))) dθ  ∫(−cos 2θ)^(−2/3) (sin 2θ) dθ=(3/2)(−cos 2θ)^(1/3)   =(3/2)(((x−1)/(x+1)))^(1/3)

$${x}=\mathrm{tan}^{\mathrm{2}} \theta \\ $$$${dx}=\mathrm{2tan}\:\theta\:\mathrm{sec}^{\mathrm{2}} \theta\:{d}\theta \\ $$$$\left[\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}+\mathrm{1}\right)\right]^{−\mathrm{2}/\mathrm{3}} \\ $$$$=\left[\left(\mathrm{tan}^{\mathrm{4}} \theta−\mathrm{1}\right)\left(\mathrm{tan}^{\mathrm{2}} \theta+\mathrm{1}\right)\right]^{−\mathrm{2}/\mathrm{3}} \\ $$$$=\left[\left(\mathrm{tan}^{\mathrm{2}} \theta−\mathrm{1}\right)\mathrm{sec}^{\mathrm{2}} \theta\mathrm{sec}^{\mathrm{2}} \theta\right]^{−\mathrm{2}/\mathrm{3}} \\ $$$$=\left[\left(\frac{\mathrm{sin}^{\mathrm{2}} \theta−\mathrm{cos}^{\mathrm{2}} \theta}{\mathrm{cos}^{\mathrm{2}} \theta}\right)\mathrm{sec}^{\mathrm{4}} \theta\right]^{−\mathrm{2}/\mathrm{3}} \\ $$$$=\left[−\mathrm{cos}\:\mathrm{2}\theta\centerdot\mathrm{sec}^{\mathrm{6}} \theta\right]^{−\mathrm{2}/\mathrm{3}} =\left(\mathrm{cos}\:\mathrm{2}\theta\right)^{−\mathrm{2}/\mathrm{3}} \left(\mathrm{sec}\:\theta\right)^{−\mathrm{4}} \\ $$$$\mathrm{Integral} \\ $$$$\int\left(−\mathrm{cos}\:\mathrm{2}\theta\right)^{−\mathrm{2}/\mathrm{3}} \left(\mathrm{sec}\:\theta\right)^{−\mathrm{4}} \:\mathrm{2}\:\mathrm{tan}\:\theta\:\mathrm{sec}^{\mathrm{2}} \theta\:{d}\theta \\ $$$$\int\left(−\mathrm{cos}\:\mathrm{2}\theta\right)^{−\mathrm{2}/\mathrm{3}} \left(\mathrm{2}\:\frac{\mathrm{tan}\:\theta}{\mathrm{sec}^{\mathrm{2}} \theta}\right)\:{d}\theta \\ $$$$\int\left(−\mathrm{cos}\:\mathrm{2}\theta\right)^{−\mathrm{2}/\mathrm{3}} \left(\mathrm{sin}\:\mathrm{2}\theta\right)\:{d}\theta=\frac{\mathrm{3}}{\mathrm{2}}\left(−\mathrm{cos}\:\mathrm{2}\theta\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$

Commented by prakash jain last updated on 03/Mar/15

This is same approach as previous except  a different substitution has been used.

$$\mathrm{This}\:\mathrm{is}\:\mathrm{same}\:\mathrm{approach}\:\mathrm{as}\:\mathrm{previous}\:\mathrm{except} \\ $$$$\mathrm{a}\:\mathrm{different}\:\mathrm{substitution}\:\mathrm{has}\:\mathrm{been}\:\mathrm{used}. \\ $$

Commented by malwaan last updated on 03/Mar/15

thanks alot

$${thanks}\:{alot} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com