Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 71170 by mr W last updated on 12/Oct/19

Commented by mr W last updated on 12/Oct/19

Question #49583 (reposted)  in a paraboloid cup, which is absolutely  smooth, a stick remains in equilibrium  as shown. find the maximum length  the stick may have.

$${Question}\:#\mathrm{49583}\:\left({reposted}\right) \\ $$$${in}\:{a}\:{paraboloid}\:{cup},\:{which}\:{is}\:{absolutely} \\ $$$${smooth},\:{a}\:{stick}\:{remains}\:{in}\:{equilibrium} \\ $$$${as}\:{shown}.\:{find}\:{the}\:{maximum}\:{length} \\ $$$${the}\:{stick}\:{may}\:{have}. \\ $$

Answered by mr W last updated on 12/Oct/19

Commented by mr W last updated on 01/Dec/19

let′s say the stick touches the inside  of the cup at point A(−e,f).  such that the stick is in equilibrium,  the contact forces F and N as well as  the gravity force of the stick must  intersect at the same point S.  let η=(h/R), ε=(e/R), λ=(l/R)  eqn. of parabola:  y=((hx^2 )/R^2 )=((ηx^2 )/R)  y′=((2ηx)/R)  at A(−e,f):  f=((ηe^2 )/R)=ηε^2 R  y′=−(1/(tan ϕ))=−((2ηe)/R)=−2ηε  ⇒tan ϕ=(1/(2ηε))  point B(R,h):  tan θ=((h−f)/(R+e))=((h−ηε^2 R)/(R+e))=((η(1−ε^2 ))/(1+ε))=η(1−ε)  eqn. of line AS:  ((y−f)/(x+e))=tan ϕ=(1/(2ηε))  ⇒y=f+((x+e)/(2ηε))  eqn. of line SB:  ((y−h)/(x−R))=−(1/(tan θ))=−(1/(η(1−ε)))  ⇒y=h−((x−R)/(η(1−ε)))  point S(x_S ,y_S ):  y_S =f+((x_S +e)/(2ηε))=h−((x_S −R)/(η(1−ε)))  ηε^2 R+((x_S +e)/(2ηε))=h−((x_S −R)/(η(1−ε)))  ηε^2 +(((x_S /R)+ε)/(2ηε))=η−(((x_S /R)−1)/(η(1−ε)))  let s=(x_S /R)  ηε^2 +((s+ε)/(2ηε))=η−((s−1)/(η(1−ε)))  ((s+ε)/(2ε))+((s−1)/(1−ε))=η^2 (1−ε^2 )  ((s−ε)/(2ε(1−ε)))=η^2 (1−ε)  ⇒s=ε+2η^2 ε(1−ε)^2   x_S =x_D =−e+((l cos θ)/2)=−e+(l/(2(√(1+tan^2  θ))))  s=(x_S /R)=−ε+(λ/(2(√(1+η^2 (1−ε)^2 ))))  −ε+(λ/(2(√(1+η^2 (1−ε)^2 ))))=ε+2η^2 ε(1−ε)^2   ⇒λ=4ε[1+η^2 (1−ε)^2 ]^(3/2)     for the maximum of length l,  (dλ/dε)=4[1+η^2 (1−ε)^2 ]^(3/2) +4ε(3/2)[1+η^2 (1−ε)^2 ]^(1/2) (−2εη^2 )=0  1+η^2 (1−ε)^2 −3η^2 ε(1−ε)=0  4ε^2 −5ε+1+(1/η^2 )=0  ⇒ε=(1/8)(5−(√(9−((16)/η^2 ))))  ⇒λ_(max) =(1/2)(5−(√(9−((16)/η^2 ))))[1+(η^2 /(64))(3+(√(9−((16)/η^2 ))))]^(3/2) ≥4    for η≤1.5242, λ_(max) =4

$${let}'{s}\:{say}\:{the}\:{stick}\:{touches}\:{the}\:{inside} \\ $$$${of}\:{the}\:{cup}\:{at}\:{point}\:{A}\left(−{e},{f}\right). \\ $$$${such}\:{that}\:{the}\:{stick}\:{is}\:{in}\:{equilibrium}, \\ $$$${the}\:{contact}\:{forces}\:{F}\:{and}\:{N}\:{as}\:{well}\:{as} \\ $$$${the}\:{gravity}\:{force}\:{of}\:{the}\:{stick}\:{must} \\ $$$${intersect}\:{at}\:{the}\:{same}\:{point}\:{S}. \\ $$$${let}\:\eta=\frac{{h}}{{R}},\:\epsilon=\frac{{e}}{{R}},\:\lambda=\frac{{l}}{{R}} \\ $$$${eqn}.\:{of}\:{parabola}: \\ $$$${y}=\frac{{hx}^{\mathrm{2}} }{{R}^{\mathrm{2}} }=\frac{\eta{x}^{\mathrm{2}} }{{R}} \\ $$$${y}'=\frac{\mathrm{2}\eta{x}}{{R}} \\ $$$${at}\:{A}\left(−{e},{f}\right): \\ $$$${f}=\frac{\eta{e}^{\mathrm{2}} }{{R}}=\eta\epsilon^{\mathrm{2}} {R} \\ $$$${y}'=−\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}=−\frac{\mathrm{2}\eta{e}}{{R}}=−\mathrm{2}\eta\epsilon \\ $$$$\Rightarrow\mathrm{tan}\:\varphi=\frac{\mathrm{1}}{\mathrm{2}\eta\epsilon} \\ $$$${point}\:{B}\left({R},{h}\right): \\ $$$$\mathrm{tan}\:\theta=\frac{{h}−{f}}{{R}+{e}}=\frac{{h}−\eta\epsilon^{\mathrm{2}} {R}}{{R}+{e}}=\frac{\eta\left(\mathrm{1}−\epsilon^{\mathrm{2}} \right)}{\mathrm{1}+\epsilon}=\eta\left(\mathrm{1}−\epsilon\right) \\ $$$${eqn}.\:{of}\:{line}\:{AS}: \\ $$$$\frac{{y}−{f}}{{x}+{e}}=\mathrm{tan}\:\varphi=\frac{\mathrm{1}}{\mathrm{2}\eta\epsilon} \\ $$$$\Rightarrow{y}={f}+\frac{{x}+{e}}{\mathrm{2}\eta\epsilon} \\ $$$${eqn}.\:{of}\:{line}\:{SB}: \\ $$$$\frac{{y}−{h}}{{x}−{R}}=−\frac{\mathrm{1}}{\mathrm{tan}\:\theta}=−\frac{\mathrm{1}}{\eta\left(\mathrm{1}−\epsilon\right)} \\ $$$$\Rightarrow{y}={h}−\frac{{x}−{R}}{\eta\left(\mathrm{1}−\epsilon\right)} \\ $$$${point}\:{S}\left({x}_{{S}} ,{y}_{{S}} \right): \\ $$$${y}_{{S}} ={f}+\frac{{x}_{{S}} +{e}}{\mathrm{2}\eta\epsilon}={h}−\frac{{x}_{{S}} −{R}}{\eta\left(\mathrm{1}−\epsilon\right)} \\ $$$$\eta\epsilon^{\mathrm{2}} {R}+\frac{{x}_{{S}} +{e}}{\mathrm{2}\eta\epsilon}={h}−\frac{{x}_{{S}} −{R}}{\eta\left(\mathrm{1}−\epsilon\right)} \\ $$$$\eta\epsilon^{\mathrm{2}} +\frac{\frac{{x}_{{S}} }{{R}}+\epsilon}{\mathrm{2}\eta\epsilon}=\eta−\frac{\frac{{x}_{{S}} }{{R}}−\mathrm{1}}{\eta\left(\mathrm{1}−\epsilon\right)} \\ $$$${let}\:{s}=\frac{{x}_{{S}} }{{R}} \\ $$$$\eta\epsilon^{\mathrm{2}} +\frac{{s}+\epsilon}{\mathrm{2}\eta\epsilon}=\eta−\frac{{s}−\mathrm{1}}{\eta\left(\mathrm{1}−\epsilon\right)} \\ $$$$\frac{{s}+\epsilon}{\mathrm{2}\epsilon}+\frac{{s}−\mathrm{1}}{\mathrm{1}−\epsilon}=\eta^{\mathrm{2}} \left(\mathrm{1}−\epsilon^{\mathrm{2}} \right) \\ $$$$\frac{{s}−\epsilon}{\mathrm{2}\epsilon\left(\mathrm{1}−\epsilon\right)}=\eta^{\mathrm{2}} \left(\mathrm{1}−\epsilon\right) \\ $$$$\Rightarrow{s}=\epsilon+\mathrm{2}\eta^{\mathrm{2}} \epsilon\left(\mathrm{1}−\epsilon\right)^{\mathrm{2}} \\ $$$${x}_{{S}} ={x}_{{D}} =−{e}+\frac{{l}\:\mathrm{cos}\:\theta}{\mathrm{2}}=−{e}+\frac{{l}}{\mathrm{2}\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta}} \\ $$$${s}=\frac{{x}_{{S}} }{{R}}=−\epsilon+\frac{\lambda}{\mathrm{2}\sqrt{\mathrm{1}+\eta^{\mathrm{2}} \left(\mathrm{1}−\epsilon\right)^{\mathrm{2}} }} \\ $$$$−\epsilon+\frac{\lambda}{\mathrm{2}\sqrt{\mathrm{1}+\eta^{\mathrm{2}} \left(\mathrm{1}−\epsilon\right)^{\mathrm{2}} }}=\epsilon+\mathrm{2}\eta^{\mathrm{2}} \epsilon\left(\mathrm{1}−\epsilon\right)^{\mathrm{2}} \\ $$$$\Rightarrow\lambda=\mathrm{4}\epsilon\left[\mathrm{1}+\eta^{\mathrm{2}} \left(\mathrm{1}−\epsilon\right)^{\mathrm{2}} \right]^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$ \\ $$$${for}\:{the}\:{maximum}\:{of}\:{length}\:{l}, \\ $$$$\frac{{d}\lambda}{{d}\epsilon}=\mathrm{4}\left[\mathrm{1}+\eta^{\mathrm{2}} \left(\mathrm{1}−\epsilon\right)^{\mathrm{2}} \right]^{\frac{\mathrm{3}}{\mathrm{2}}} +\mathrm{4}\epsilon\frac{\mathrm{3}}{\mathrm{2}}\left[\mathrm{1}+\eta^{\mathrm{2}} \left(\mathrm{1}−\epsilon\right)^{\mathrm{2}} \right]^{\frac{\mathrm{1}}{\mathrm{2}}} \left(−\mathrm{2}\epsilon\eta^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\mathrm{1}+\eta^{\mathrm{2}} \left(\mathrm{1}−\epsilon\right)^{\mathrm{2}} −\mathrm{3}\eta^{\mathrm{2}} \epsilon\left(\mathrm{1}−\epsilon\right)=\mathrm{0} \\ $$$$\mathrm{4}\epsilon^{\mathrm{2}} −\mathrm{5}\epsilon+\mathrm{1}+\frac{\mathrm{1}}{\eta^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\epsilon=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{5}−\sqrt{\mathrm{9}−\frac{\mathrm{16}}{\eta^{\mathrm{2}} }}\right) \\ $$$$\Rightarrow\lambda_{{max}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{5}−\sqrt{\mathrm{9}−\frac{\mathrm{16}}{\eta^{\mathrm{2}} }}\right)\left[\mathrm{1}+\frac{\eta^{\mathrm{2}} }{\mathrm{64}}\left(\mathrm{3}+\sqrt{\mathrm{9}−\frac{\mathrm{16}}{\eta^{\mathrm{2}} }}\right)\right]^{\frac{\mathrm{3}}{\mathrm{2}}} \geqslant\mathrm{4} \\ $$$$ \\ $$$${for}\:\eta\leqslant\mathrm{1}.\mathrm{5242},\:\lambda_{{max}} =\mathrm{4} \\ $$

Commented by ajfour last updated on 12/Oct/19

did you not solve it then, sir?

$${did}\:{you}\:{not}\:{solve}\:{it}\:{then},\:{sir}? \\ $$

Commented by mr W last updated on 12/Oct/19

Commented by mr W last updated on 12/Oct/19

sir, i deleted the old post by accident,   but i wanted to keep the solution  somehow, therefore i reposted it here.

$${sir},\:{i}\:{deleted}\:{the}\:{old}\:{post}\:{by}\:{accident},\: \\ $$$${but}\:{i}\:{wanted}\:{to}\:{keep}\:{the}\:{solution} \\ $$$${somehow},\:{therefore}\:{i}\:{reposted}\:{it}\:{here}. \\ $$

Commented by mr W last updated on 12/Oct/19

Commented by mr W last updated on 12/Oct/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com