Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 72390 by mathmax by abdo last updated on 28/Oct/19

calculate U_n =∫_0 ^∞   ((arctan(1+x^4 ))/((x^2  +n^2 )^3 ))dx  and determine nature of the serie Σ U_n

$${calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}{\left({x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx} \\ $$$${and}\:{determine}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$

Commented by mathmax by abdo last updated on 31/Oct/19

changement x=nt give U_n =∫_0 ^∞   ((arctan(1+n^4 t^4 ))/(n^6 (t^2  +1)^3 )) (n)dt  =(1/n^5 ) ∫_0 ^∞   ((arctan(1+n^4 t^4 ))/((t^2  +1)^3 ))dt ⇒2n^5  U_n =∫_(−∞) ^(+∞)  ((arctan(1+n^4 t^4 ))/((t^2  +1)^3 ))dt  let ϕ(z)=((arctan(1+n^4 z^4 ))/((z^2 +1)^3 )) ⇒ϕ(z)=((arctan(1+n^4 z^4 ))/((z−i)^3 (z+i)^3 ))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)   (1/((3−1)!)){(z−i)^3 ϕ(z)}^((2))   =lim_(z→i)    (1/2){  ((arctan(n^4 z^4 +1))/((z+i)^3 ))}^((2))   2Res(ϕ,i) =lim_(z→i)    {((((4n^4 z^3 )/(1+(n^4 z^4 +1)^2 ))×(z+i)^3 −3(z+i)^2  arctan(n^4 z^4 +1))/((z+i)^6 ))}^((1))   =lim_(z→i)    { ((4n^4 z^3 (z+i)−3arctan(n^4 z^4 +1))/((z+i)^4 {1+(n^4 z^4  +1)^2 }))}^((1))   ....be continued....

$${changement}\:{x}={nt}\:{give}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{1}+{n}^{\mathrm{4}} {t}^{\mathrm{4}} \right)}{{n}^{\mathrm{6}} \left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }\:\left({n}\right){dt} \\ $$$$=\frac{\mathrm{1}}{{n}^{\mathrm{5}} }\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{1}+{n}^{\mathrm{4}} {t}^{\mathrm{4}} \right)}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }{dt}\:\Rightarrow\mathrm{2}{n}^{\mathrm{5}} \:{U}_{{n}} =\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left(\mathrm{1}+{n}^{\mathrm{4}} {t}^{\mathrm{4}} \right)}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }{dt} \\ $$$${let}\:\varphi\left({z}\right)=\frac{{arctan}\left(\mathrm{1}+{n}^{\mathrm{4}} {z}^{\mathrm{4}} \right)}{\left({z}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\:\Rightarrow\varphi\left({z}\right)=\frac{{arctan}\left(\mathrm{1}+{n}^{\mathrm{4}} {z}^{\mathrm{4}} \right)}{\left({z}−{i}\right)^{\mathrm{3}} \left({z}+{i}\right)^{\mathrm{3}} } \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right) \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{1}}{\left(\mathrm{3}−\mathrm{1}\right)!}\left\{\left({z}−{i}\right)^{\mathrm{3}} \varphi\left({z}\right)\right\}^{\left(\mathrm{2}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\:\frac{{arctan}\left({n}^{\mathrm{4}} {z}^{\mathrm{4}} +\mathrm{1}\right)}{\left({z}+{i}\right)^{\mathrm{3}} }\right\}^{\left(\mathrm{2}\right)} \\ $$$$\mathrm{2}{Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \:\:\:\left\{\frac{\frac{\mathrm{4}{n}^{\mathrm{4}} {z}^{\mathrm{3}} }{\mathrm{1}+\left({n}^{\mathrm{4}} {z}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{2}} }×\left({z}+{i}\right)^{\mathrm{3}} −\mathrm{3}\left({z}+{i}\right)^{\mathrm{2}} \:{arctan}\left({n}^{\mathrm{4}} {z}^{\mathrm{4}} +\mathrm{1}\right)}{\left({z}+{i}\right)^{\mathrm{6}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\left\{\:\frac{\mathrm{4}{n}^{\mathrm{4}} {z}^{\mathrm{3}} \left({z}+{i}\right)−\mathrm{3}{arctan}\left({n}^{\mathrm{4}} {z}^{\mathrm{4}} +\mathrm{1}\right)}{\left({z}+{i}\right)^{\mathrm{4}} \left\{\mathrm{1}+\left({n}^{\mathrm{4}} {z}^{\mathrm{4}} \:+\mathrm{1}\right)^{\mathrm{2}} \right\}}\right\}^{\left(\mathrm{1}\right)} \\ $$$$....{be}\:{continued}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com