Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 72773 by ajfour last updated on 02/Nov/19

Commented by ajfour last updated on 02/Nov/19

If parabola in xz plane has eq.  z=ax^2    find eq. of shadow of  this parabola on ground (xy plane).

$${If}\:{parabola}\:{in}\:{xz}\:{plane}\:{has}\:{eq}. \\ $$$${z}={ax}^{\mathrm{2}} \:\:\:{find}\:{eq}.\:{of}\:{shadow}\:{of} \\ $$$${this}\:{parabola}\:{on}\:{ground}\:\left({xy}\:{plane}\right). \\ $$

Commented by MJS last updated on 02/Nov/19

you get a hyperbola with  y=(d/2)((√(1+((4ax^2 )/h)))−1)

$$\mathrm{you}\:\mathrm{get}\:\mathrm{a}\:\mathrm{hyperbola}\:\mathrm{with} \\ $$$${y}=\frac{{d}}{\mathrm{2}}\left(\sqrt{\mathrm{1}+\frac{\mathrm{4}{ax}^{\mathrm{2}} }{{h}}}−\mathrm{1}\right) \\ $$

Answered by mr W last updated on 02/Nov/19

let′s say the shadow of point P(x,z) in  plane xz is point Q(u,v) in plane xy.  in 3D−system:  S(0,−d,h)  P(x,0,z)  Q(u,v,0)  (u/x)=((v+d)/d)=((−h)/(z−h))  ⇒x=(du/(v+d))  ⇒z=((hv)/(v+d))    example:  the shadow of parabola z=ax^2 :  z=ax^2   ⇒((hv)/(v+d))=a((du/(v+d)))^2   ⇒v(v+d)=((ad^2 u^2 )/h)  or  ⇒y(y+d)=((ad^2 x^2 )/h)  ← eqn. of shadow  or  ⇒y=((√(1+((4ax^2 )/h)))−1)(d/2)    the shadow of circle x^2 +(z−r)^2 =r^2 :  x^2 +(z−r)^2 =r^2   ((du/(v+d)))^2 +(((hv)/(v+d))−r)^2 =r^2   or  ⇒d^2 x^2 =hy[(2r−h)y+2rd]  or  ⇒y=((−rhd+d(√(r^2 h^2 −(2r−h)hx^2 )))/(2r−h))

$${let}'{s}\:{say}\:{the}\:{shadow}\:{of}\:{point}\:{P}\left({x},{z}\right)\:{in} \\ $$$${plane}\:{xz}\:{is}\:{point}\:{Q}\left({u},{v}\right)\:{in}\:{plane}\:{xy}. \\ $$$${in}\:\mathrm{3}{D}−{system}: \\ $$$${S}\left(\mathrm{0},−{d},{h}\right) \\ $$$${P}\left({x},\mathrm{0},{z}\right) \\ $$$${Q}\left({u},{v},\mathrm{0}\right) \\ $$$$\frac{{u}}{{x}}=\frac{{v}+{d}}{{d}}=\frac{−{h}}{{z}−{h}} \\ $$$$\Rightarrow{x}=\frac{{du}}{{v}+{d}} \\ $$$$\Rightarrow{z}=\frac{{hv}}{{v}+{d}} \\ $$$$ \\ $$$${example}: \\ $$$${the}\:{shadow}\:{of}\:{parabola}\:{z}={ax}^{\mathrm{2}} : \\ $$$${z}={ax}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{hv}}{{v}+{d}}={a}\left(\frac{{du}}{{v}+{d}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{v}\left({v}+{d}\right)=\frac{{ad}^{\mathrm{2}} {u}^{\mathrm{2}} }{{h}} \\ $$$${or} \\ $$$$\Rightarrow{y}\left({y}+{d}\right)=\frac{{ad}^{\mathrm{2}} {x}^{\mathrm{2}} }{{h}}\:\:\leftarrow\:{eqn}.\:{of}\:{shadow} \\ $$$${or} \\ $$$$\Rightarrow{y}=\left(\sqrt{\mathrm{1}+\frac{\mathrm{4}{ax}^{\mathrm{2}} }{{h}}}−\mathrm{1}\right)\frac{{d}}{\mathrm{2}} \\ $$$$ \\ $$$${the}\:{shadow}\:{of}\:{circle}\:{x}^{\mathrm{2}} +\left({z}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} : \\ $$$${x}^{\mathrm{2}} +\left({z}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left(\frac{{du}}{{v}+{d}}\right)^{\mathrm{2}} +\left(\frac{{hv}}{{v}+{d}}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${or} \\ $$$$\Rightarrow{d}^{\mathrm{2}} {x}^{\mathrm{2}} ={hy}\left[\left(\mathrm{2}{r}−{h}\right){y}+\mathrm{2}{rd}\right] \\ $$$${or} \\ $$$$\Rightarrow{y}=\frac{−{rhd}+{d}\sqrt{{r}^{\mathrm{2}} {h}^{\mathrm{2}} −\left(\mathrm{2}{r}−{h}\right){hx}^{\mathrm{2}} }}{\mathrm{2}{r}−{h}} \\ $$

Commented by ajfour last updated on 02/Nov/19

Thank you MjS Sir, mrW Sir.

$${Thank}\:{you}\:{MjS}\:{Sir},\:{mrW}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com