Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 72787 by Maclaurin Stickker last updated on 02/Nov/19

If z_1 =6(cos (π/4)+sin (π/4)) and  z_2 =2(cos (π/5)+i×sin (π/5)) calculate (z_1 /z_2 ).

$${If}\:{z}_{\mathrm{1}} =\mathrm{6}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{4}}+\mathrm{sin}\:\frac{\pi}{\mathrm{4}}\right)\:{and} \\ $$$${z}_{\mathrm{2}} =\mathrm{2}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{5}}+\mathrm{i}×\mathrm{sin}\:\frac{\pi}{\mathrm{5}}\right)\:{calculate}\:\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{2}} }. \\ $$

Commented by MJS last updated on 02/Nov/19

z_1  ∈R???

$${z}_{\mathrm{1}} \:\in\mathbb{R}??? \\ $$

Answered by MJS last updated on 02/Nov/19

z_1 =6(cos (π/4) +sin (π/4))=6(√2)  z_2 =2(cos (π/5)+i×sin (π/5))=2e^(i(π/5)) =((1+(√5))/2)+((√(10−2(√5)))/2)i  ⇒ (z_1 /z_2 )=6(√2)×(1/2)e^(−i(π/5)) =3(√2)e^(−i(π/5)) =3(√2)(cos (π/5) −i×sin (π/5))=  =((3(√2)(1+(√5)))/4)−((3(√(5−(√5))))/2)i  or  z_1 =6(cos (π/4) +i×sin (π/4))=6e^(i(π/4)) =3(√2)+3(√2)i  z_2 =2(cos (π/5)+i×sin (π/5))=2e^(i(π/5)) =((1+(√5))/2)+((√(10−2(√5)))/2)i  ⇒ (z_1 /z_2 )=6e^(i(π/4)) ×(1/2)e^(−i(π/5)) =3e^(i(π/(20))) =3(cos (π/(20)) +sin (π/(20)))=  =((3((√2)(1+(√5))+2(√(5−(√5)))))/8)+((3((√2)(1+(√5))−2(√(5−(√5)))))/8)i

$${z}_{\mathrm{1}} =\mathrm{6}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{4}}\:+\mathrm{sin}\:\frac{\pi}{\mathrm{4}}\right)=\mathrm{6}\sqrt{\mathrm{2}} \\ $$$${z}_{\mathrm{2}} =\mathrm{2}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{5}}+\mathrm{i}×\mathrm{sin}\:\frac{\pi}{\mathrm{5}}\right)=\mathrm{2e}^{\mathrm{i}\frac{\pi}{\mathrm{5}}} =\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}}\mathrm{i} \\ $$$$\Rightarrow\:\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{2}} }=\mathrm{6}\sqrt{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{i}\frac{\pi}{\mathrm{5}}} =\mathrm{3}\sqrt{\mathrm{2}}\mathrm{e}^{−\mathrm{i}\frac{\pi}{\mathrm{5}}} =\mathrm{3}\sqrt{\mathrm{2}}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{5}}\:−\mathrm{i}×\mathrm{sin}\:\frac{\pi}{\mathrm{5}}\right)= \\ $$$$=\frac{\mathrm{3}\sqrt{\mathrm{2}}\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)}{\mathrm{4}}−\frac{\mathrm{3}\sqrt{\mathrm{5}−\sqrt{\mathrm{5}}}}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{or} \\ $$$${z}_{\mathrm{1}} =\mathrm{6}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{4}}\:+\mathrm{i}×\mathrm{sin}\:\frac{\pi}{\mathrm{4}}\right)=\mathrm{6e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} =\mathrm{3}\sqrt{\mathrm{2}}+\mathrm{3}\sqrt{\mathrm{2}}\mathrm{i} \\ $$$${z}_{\mathrm{2}} =\mathrm{2}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{5}}+\mathrm{i}×\mathrm{sin}\:\frac{\pi}{\mathrm{5}}\right)=\mathrm{2e}^{\mathrm{i}\frac{\pi}{\mathrm{5}}} =\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}}\mathrm{i} \\ $$$$\Rightarrow\:\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{2}} }=\mathrm{6e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} ×\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{i}\frac{\pi}{\mathrm{5}}} =\mathrm{3e}^{\mathrm{i}\frac{\pi}{\mathrm{20}}} =\mathrm{3}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{20}}\:+\mathrm{sin}\:\frac{\pi}{\mathrm{20}}\right)= \\ $$$$=\frac{\mathrm{3}\left(\sqrt{\mathrm{2}}\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)+\mathrm{2}\sqrt{\mathrm{5}−\sqrt{\mathrm{5}}}\right)}{\mathrm{8}}+\frac{\mathrm{3}\left(\sqrt{\mathrm{2}}\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)−\mathrm{2}\sqrt{\mathrm{5}−\sqrt{\mathrm{5}}}\right)}{\mathrm{8}}\mathrm{i} \\ $$

Commented by Maclaurin Stickker last updated on 03/Nov/19

Thank you, sir MJS.

$${Thank}\:{you},\:{sir}\:{MJS}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com