Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 7289 by FilupSmith last updated on 21/Aug/16

For any number x>1:x∈Z  x can be expressed as a combination  of numbers multiplied together.  e.g.  10=5×2  20=5×4=5×2×2  100=10×10=5×2×5×2     ∴ x = p_1 ^e_1  p_2 ^e_2  ...p_n ^e_n            where p_n  is the nth                                              prime factor                                              e_n  is the exponent  e.g.  x=810=8×10×11=4×2×5×2×11  x=2^4 ×5^1 ×11     ⇒ p_1 =2, e_1 =4, etc.     let ω(x) be the number of discrete prime factors  ∴ ω(x)=n  x=Π_(t=1) ^(ω(x)) p_t ^e_t       Therefore the number of prime factors  is given by:  ℧(x)=Σ_(t=0) ^(ω(x)) e_t      Question  How many combinations are there to  represent x as the product of k numbers?  (exluding 1. e.g. 10=10×1×1×1×1)  e.g.     3 number ⇒ 30=3×10=3×5×2              ℧(30)=3!=6 ways     My working so far:     x=a×b×...×k         combinations of k numbers  x=(a_1 ×a_2 ×...×a_(ω(a)) )...(k_1 ×...×k_(ω(k)) )  a_1 , a_2 , ..., k_1 , etc   are the prime factors  of a, b, ...., k     ∴ any arramgement with the bracets work  so long as k brackets are present     let C_k (x) be the combination of ways  to express x as the product of k  integers (not equal to 1).  x=(Π_(t=1) ^(ω(a)) a_t ^e_t  )(Π_(t=1) ^(ω(b)) b_t ^e_t  )...(Π_(t=1) ^(ω(k)) k_1 ^e_t  )  C_k (x)=???

$$\mathrm{For}\:\mathrm{any}\:\mathrm{number}\:{x}>\mathrm{1}:{x}\in\mathbb{Z} \\ $$ $${x}\:\mathrm{can}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{as}\:\mathrm{a}\:\mathrm{combination} \\ $$ $$\mathrm{of}\:\mathrm{numbers}\:\mathrm{multiplied}\:\mathrm{together}. \\ $$ $$\mathrm{e}.\mathrm{g}. \\ $$ $$\mathrm{10}=\mathrm{5}×\mathrm{2} \\ $$ $$\mathrm{20}=\mathrm{5}×\mathrm{4}=\mathrm{5}×\mathrm{2}×\mathrm{2} \\ $$ $$\mathrm{100}=\mathrm{10}×\mathrm{10}=\mathrm{5}×\mathrm{2}×\mathrm{5}×\mathrm{2} \\ $$ $$\: \\ $$ $$\therefore\:{x}\:=\:{p}_{\mathrm{1}} ^{{e}_{\mathrm{1}} } {p}_{\mathrm{2}} ^{{e}_{\mathrm{2}} } ...{p}_{{n}} ^{{e}_{{n}} } \:\:\:\:\:\:\:\:\:\:\mathrm{where}\:{p}_{{n}} \:\mathrm{is}\:\mathrm{the}\:{n}\mathrm{th} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{prime}\:\mathrm{factor} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}_{{n}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{exponent} \\ $$ $$\mathrm{e}.\mathrm{g}. \\ $$ $${x}=\mathrm{810}=\mathrm{8}×\mathrm{10}×\mathrm{11}=\mathrm{4}×\mathrm{2}×\mathrm{5}×\mathrm{2}×\mathrm{11} \\ $$ $${x}=\mathrm{2}^{\mathrm{4}} ×\mathrm{5}^{\mathrm{1}} ×\mathrm{11}\:\:\:\:\:\Rightarrow\:{p}_{\mathrm{1}} =\mathrm{2},\:{e}_{\mathrm{1}} =\mathrm{4},\:{etc}. \\ $$ $$\: \\ $$ $$\mathrm{let}\:\omega\left({x}\right)\:\mathrm{be}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{discrete}\:\mathrm{prime}\:\mathrm{factors} \\ $$ $$\therefore\:\omega\left({x}\right)={n} \\ $$ $${x}=\underset{{t}=\mathrm{1}} {\overset{\omega\left({x}\right)} {\prod}}{p}_{{t}} ^{{e}_{{t}} } \\ $$ $$\: \\ $$ $$\mathrm{Therefore}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{prime}\:\mathrm{factors} \\ $$ $$\mathrm{is}\:\mathrm{given}\:\mathrm{by}: \\ $$ $$\mho\left({x}\right)=\underset{{t}=\mathrm{0}} {\overset{\omega\left({x}\right)} {\sum}}{e}_{{t}} \\ $$ $$\: \\ $$ $$\mathrm{Question} \\ $$ $$\mathrm{How}\:\mathrm{many}\:\mathrm{combinations}\:\mathrm{are}\:\mathrm{there}\:\mathrm{to} \\ $$ $$\mathrm{represent}\:{x}\:\mathrm{as}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:{k}\:\mathrm{numbers}? \\ $$ $$\left(\mathrm{exluding}\:\mathrm{1}.\:\mathrm{e}.\mathrm{g}.\:\mathrm{10}=\mathrm{10}×\mathrm{1}×\mathrm{1}×\mathrm{1}×\mathrm{1}\right) \\ $$ $$\mathrm{e}.\mathrm{g}.\:\:\:\:\:\mathrm{3}\:\mathrm{number}\:\Rightarrow\:\mathrm{30}=\mathrm{3}×\mathrm{10}=\mathrm{3}×\mathrm{5}×\mathrm{2} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\mho\left(\mathrm{30}\right)=\mathrm{3}!=\mathrm{6}\:\mathrm{ways} \\ $$ $$\: \\ $$ $$\mathrm{My}\:\mathrm{working}\:\mathrm{so}\:\mathrm{far}: \\ $$ $$\: \\ $$ $${x}={a}×{b}×...×{k}\:\:\:\:\:\:\:\:\:\mathrm{combinations}\:\mathrm{of}\:{k}\:\mathrm{numbers} \\ $$ $${x}=\left({a}_{\mathrm{1}} ×{a}_{\mathrm{2}} ×...×{a}_{\omega\left({a}\right)} \right)...\left({k}_{\mathrm{1}} ×...×{k}_{\omega\left({k}\right)} \right) \\ $$ $${a}_{\mathrm{1}} ,\:{a}_{\mathrm{2}} ,\:...,\:{k}_{\mathrm{1}} ,\:{etc}\:\:\:\mathrm{are}\:\mathrm{the}\:\mathrm{prime}\:\mathrm{factors} \\ $$ $$\mathrm{of}\:{a},\:{b},\:....,\:{k} \\ $$ $$\: \\ $$ $$\therefore\:\mathrm{any}\:\mathrm{arramgement}\:\mathrm{with}\:\mathrm{the}\:\mathrm{bracets}\:\mathrm{work} \\ $$ $$\mathrm{so}\:\mathrm{long}\:\mathrm{as}\:{k}\:\mathrm{brackets}\:\mathrm{are}\:\mathrm{present} \\ $$ $$\: \\ $$ $$\mathrm{let}\:{C}_{{k}} \left({x}\right)\:\mathrm{be}\:\mathrm{the}\:\mathrm{combination}\:\mathrm{of}\:\mathrm{ways} \\ $$ $$\mathrm{to}\:\mathrm{express}\:{x}\:\mathrm{as}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:{k} \\ $$ $$\mathrm{integers}\:\left(\mathrm{not}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{1}\right). \\ $$ $${x}=\left(\underset{{t}=\mathrm{1}} {\overset{\omega\left({a}\right)} {\prod}}{a}_{{t}} ^{{e}_{{t}} } \right)\left(\underset{{t}=\mathrm{1}} {\overset{\omega\left({b}\right)} {\prod}}{b}_{{t}} ^{{e}_{{t}} } \right)...\left(\underset{{t}=\mathrm{1}} {\overset{\omega\left({k}\right)} {\prod}}{k}_{\mathrm{1}} ^{{e}_{{t}} } \right) \\ $$ $${C}_{{k}} \left({x}\right)=??? \\ $$

Commented byFilupSmith last updated on 21/Aug/16

lets say you was x as the product of two integers.  i.e.  k=2    x=(a_1 ×a_2 ×a_3 ...a_α )(b_1 ×b_2 ×b_3 ...b_β )     =(a_1 ×b_2 ×a_3 ...a_α )(b_1 ×a_2 ×b_3 ...b_β )  etc  x=(Π_(t=1) ^(ω(a)) a_t ^α_t  )(Π_(k=1) ^(ω(b)) b_t ^β_t  )  C_2 (x)=(Σ_(t=1) ^(ω(a)) α_t +Σ_(t=1) ^(ω(b)) β_t )  C_2 (x)=(℧(a)+℧(b))!    therefore does:  C_k (x)=[℧(a)+℧(b)+...+℧(k)]!

$$\mathrm{lets}\:\mathrm{say}\:\mathrm{you}\:\mathrm{was}\:{x}\:\mathrm{as}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{two}\:\mathrm{integers}. \\ $$ $$\mathrm{i}.\mathrm{e}.\:\:{k}=\mathrm{2} \\ $$ $$ \\ $$ $${x}=\left({a}_{\mathrm{1}} ×{a}_{\mathrm{2}} ×{a}_{\mathrm{3}} ...{a}_{\alpha} \right)\left({b}_{\mathrm{1}} ×{b}_{\mathrm{2}} ×{b}_{\mathrm{3}} ...{b}_{\beta} \right) \\ $$ $$\:\:\:=\left({a}_{\mathrm{1}} ×{b}_{\mathrm{2}} ×{a}_{\mathrm{3}} ...{a}_{\alpha} \right)\left({b}_{\mathrm{1}} ×{a}_{\mathrm{2}} ×{b}_{\mathrm{3}} ...{b}_{\beta} \right) \\ $$ $${etc} \\ $$ $${x}=\left(\underset{{t}=\mathrm{1}} {\overset{\omega\left({a}\right)} {\prod}}{a}_{{t}} ^{\alpha_{{t}} } \right)\left(\underset{{k}=\mathrm{1}} {\overset{\omega\left({b}\right)} {\prod}}{b}_{{t}} ^{\beta_{{t}} } \right) \\ $$ $${C}_{\mathrm{2}} \left({x}\right)=\left(\underset{{t}=\mathrm{1}} {\overset{\omega\left({a}\right)} {\sum}}\alpha_{{t}} +\underset{{t}=\mathrm{1}} {\overset{\omega\left({b}\right)} {\sum}}\beta_{{t}} \right) \\ $$ $${C}_{\mathrm{2}} \left({x}\right)=\left(\mho\left({a}\right)+\mho\left({b}\right)\right)! \\ $$ $$ \\ $$ $$\mathrm{therefore}\:\mathrm{does}: \\ $$ $${C}_{{k}} \left({x}\right)=\left[\mho\left({a}\right)+\mho\left({b}\right)+...+\mho\left({k}\right)\right]! \\ $$

Commented byprakash jain last updated on 21/Aug/16

Just to make sure that I understand your  question:  You are looking for a formula for finding  in how many ways a number can be written  as a product of k integers. Correct?  For this purpose do you count, for exmaple  2×5 and 5×2 as two different ways?

$$\mathrm{Just}\:\mathrm{to}\:\mathrm{make}\:\mathrm{sure}\:\mathrm{that}\:\mathrm{I}\:\mathrm{understand}\:\mathrm{your} \\ $$ $$\mathrm{question}: \\ $$ $$\mathrm{You}\:\mathrm{are}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{a}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{finding} \\ $$ $$\mathrm{in}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{a}\:\mathrm{number}\:\mathrm{can}\:\mathrm{be}\:\mathrm{written} \\ $$ $$\mathrm{as}\:\mathrm{a}\:\mathrm{product}\:\mathrm{of}\:{k}\:\mathrm{integers}.\:\mathrm{Correct}? \\ $$ $$\mathrm{For}\:\mathrm{this}\:\mathrm{purpose}\:\mathrm{do}\:\mathrm{you}\:\mathrm{count},\:\mathrm{for}\:\mathrm{exmaple} \\ $$ $$\mathrm{2}×\mathrm{5}\:\mathrm{and}\:\mathrm{5}×\mathrm{2}\:\mathrm{as}\:\mathrm{two}\:\mathrm{different}\:\mathrm{ways}? \\ $$

Commented byFilupSmith last updated on 21/Aug/16

correct

$$\mathrm{correct} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com