Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 74019 by mathmax by abdo last updated on 17/Nov/19

let the matrix  A = (((1         2)),((0         −3)) )  1) calculate A^n   for n integr  2) find e^A   and e^(−A) .

$${let}\:{the}\:{matrix}\:\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:−\mathrm{3}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \:\:{for}\:{n}\:{integr} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{e}^{{A}} \:\:{and}\:{e}^{−{A}} . \\ $$

Commented by mathmax by abdo last updated on 18/Nov/19

the caracteristic polynom of A is  p(x)=det(A−xI) = determinant (((1−x      2)),((0        −3−x)))=−(3+x)(1−x)  =(x+3)(x−1) the propers value is λ_1 =−3  and λ_2 =1  V(λ_1 )=ker(A+3I)={u/(A+3I)u=0}  u ((x),(y) )    (A+3I)u=0  ⇔ (((4         2)),((0         0)) ) ((x),(y) )  =0 ⇒4x+2y =0 ⇒2x+y=0 ⇒  y=−2x ⇒(x,y)=(x,−2x)=x(1,−2) ⇒V(−3)=vet(e_1 ) with  e_1 (1,−2)  V(λ_1 )=Ker(A−I)={u /(A−I)u=0}  (A−I)u=0 ⇒ (((0         2)),((0         −4)) )  ((x),(y) )=0   ⇒y=0 ⇒(x,y)=x(1,0)  ⇒P = (((1         1)),((−2     0)) )    and  D = (((−3        0)),((0              1)) )  A =P DP^(−1)  ⇒ A^n =PD^n P^(−1)    we have  p_c (P)= determinant (((1−x         1)),((−2           −x)))=−x(1−x)+2 =x^2 −x +2  cayley hamilton ⇒p^2 −p +2I =0 ⇒p(p−I) =−2I ⇒  p{−(1/2)(p−I)} =I ⇒p^(−1) =(1/2){ I−p}  =(1/2){  (((1      0)),((0       1)) )  − (((1           1)),((−2       0)) )} =(1/2)  (((0            −1)),((2                 1)) )  A^n =(1/2) (((1          1)),((−2     0)) )   ((((−3)^n         0)),((0                    1)) )   (((0          −1)),((2              1)) )  =(1/2) ((((−3)^(n    )               1)),((−2(−3)^n            0)) )    (((0          −1)),((2              1)) )  =(1/2)  ((( 2                    1−(−3)^n )),((0                           2(−3)^n )) )  = (((1           ((1−(−3)^n )/2))),((0                    (−3)^n )) )

$${the}\:{caracteristic}\:{polynom}\:{of}\:{A}\:{is} \\ $$$${p}\left({x}\right)={det}\left({A}−{xI}\right)\:=\begin{vmatrix}{\mathrm{1}−{x}\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{0}\:\:\:\:\:\:\:\:−\mathrm{3}−{x}}\end{vmatrix}=−\left(\mathrm{3}+{x}\right)\left(\mathrm{1}−{x}\right) \\ $$$$=\left({x}+\mathrm{3}\right)\left({x}−\mathrm{1}\right)\:{the}\:{propers}\:{value}\:{is}\:\lambda_{\mathrm{1}} =−\mathrm{3}\:\:{and}\:\lambda_{\mathrm{2}} =\mathrm{1} \\ $$$${V}\left(\lambda_{\mathrm{1}} \right)={ker}\left({A}+\mathrm{3}{I}\right)=\left\{{u}/\left({A}+\mathrm{3}{I}\right){u}=\mathrm{0}\right\} \\ $$$${u}\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:\:\:\:\left({A}+\mathrm{3}{I}\right){u}=\mathrm{0}\:\:\Leftrightarrow\begin{pmatrix}{\mathrm{4}\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:\:=\mathrm{0}\:\Rightarrow\mathrm{4}{x}+\mathrm{2}{y}\:=\mathrm{0}\:\Rightarrow\mathrm{2}{x}+{y}=\mathrm{0}\:\Rightarrow \\ $$$${y}=−\mathrm{2}{x}\:\Rightarrow\left({x},{y}\right)=\left({x},−\mathrm{2}{x}\right)={x}\left(\mathrm{1},−\mathrm{2}\right)\:\Rightarrow{V}\left(−\mathrm{3}\right)={vet}\left({e}_{\mathrm{1}} \right)\:{with} \\ $$$${e}_{\mathrm{1}} \left(\mathrm{1},−\mathrm{2}\right) \\ $$$${V}\left(\lambda_{\mathrm{1}} \right)={Ker}\left({A}−{I}\right)=\left\{{u}\:/\left({A}−{I}\right){u}=\mathrm{0}\right\} \\ $$$$\left({A}−{I}\right){u}=\mathrm{0}\:\Rightarrow\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:−\mathrm{4}}\end{pmatrix}\:\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\mathrm{0}\:\:\:\Rightarrow{y}=\mathrm{0}\:\Rightarrow\left({x},{y}\right)={x}\left(\mathrm{1},\mathrm{0}\right) \\ $$$$\Rightarrow{P}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{2}\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:\:\:\:{and}\:\:{D}\:=\begin{pmatrix}{−\mathrm{3}\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${A}\:={P}\:{DP}^{−\mathrm{1}} \:\Rightarrow\:{A}^{{n}} ={PD}^{{n}} {P}^{−\mathrm{1}} \: \\ $$$${we}\:{have}\:\:{p}_{{c}} \left({P}\right)=\begin{vmatrix}{\mathrm{1}−{x}\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:−{x}}\end{vmatrix}=−{x}\left(\mathrm{1}−{x}\right)+\mathrm{2}\:={x}^{\mathrm{2}} −{x}\:+\mathrm{2} \\ $$$${cayley}\:{hamilton}\:\Rightarrow{p}^{\mathrm{2}} −{p}\:+\mathrm{2}{I}\:=\mathrm{0}\:\Rightarrow{p}\left({p}−{I}\right)\:=−\mathrm{2}{I}\:\Rightarrow \\ $$$${p}\left\{−\frac{\mathrm{1}}{\mathrm{2}}\left({p}−{I}\right)\right\}\:={I}\:\Rightarrow{p}^{−\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\:{I}−{p}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}\:\:−\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{2}\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\right\}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{1}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${A}^{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{2}\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:\:\begin{pmatrix}{\left(−\mathrm{3}\right)^{{n}} \:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}\:\:\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:−\mathrm{1}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\begin{pmatrix}{\left(−\mathrm{3}\right)^{{n}\:\:\:\:} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{2}\left(−\mathrm{3}\right)^{{n}} \:\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:\:\:\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:−\mathrm{1}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\begin{pmatrix}{\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}−\left(−\mathrm{3}\right)^{{n}} }\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\left(−\mathrm{3}\right)^{{n}} }\end{pmatrix}\:\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}−\left(−\mathrm{3}\right)^{{n}} }{\mathrm{2}}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(−\mathrm{3}\right)^{{n}} }\end{pmatrix} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 18/Nov/19

2) e^A  =Σ_(n=0) ^∞  (A^n /(n!)) =  (((Σ_(n=0) ^∞  (1/(n!))           Σ_(n=0)  ((1−(−3)^n )/(2n!)))),((0                              Σ_(n=0) ^∞    (((−3)^n )/(n!)) )) )  =  (((  e            (1/2)(e−e^(−3) ))),((0                     e^(−3) )) )

$$\left.\mathrm{2}\right)\:{e}^{{A}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{A}^{{n}} }{{n}!}\:=\:\begin{pmatrix}{\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\:\:\:\:\:\:\:\:\:\:\:\sum_{{n}=\mathrm{0}} \:\frac{\mathrm{1}−\left(−\mathrm{3}\right)^{{n}} }{\mathrm{2}{n}!}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{3}\right)^{{n}} }{{n}!}\:}\end{pmatrix} \\ $$$$=\:\begin{pmatrix}{\:\:{e}\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\left({e}−{e}^{−\mathrm{3}} \right)}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}^{−\mathrm{3}} }\end{pmatrix} \\ $$

Commented by mathmax by abdo last updated on 18/Nov/19

e^(−A)  =Σ_(n=0) ^∞  (((−1)^n )/(n!)) A^n  =Σ_(n=0) ^∞  (((−1)^n )/(n!))  (((1         ((1−(−3)^n )/2))),((0                 (−3)^n )) )  = (((  Σ_(n=0) ^∞   (((−1)^n )/(n!))          Σ_(n=0) ^∞  (((−1)^n )/(n!))  ((1−(−3)^n )/2))),((0                                       Σ_(n=0) ^∞    (((−1)^n (−3)^n )/(n!))                )) )  =  (((   e^(−1)                   (1/2)(  e^(−1) −e^3 )    )),((0                                        e^3                 )) )

$${e}^{−{A}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:{A}^{{n}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}−\left(−\mathrm{3}\right)^{{n}} }{\mathrm{2}}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(−\mathrm{3}\right)^{{n}} }\end{pmatrix} \\ $$$$=\begin{pmatrix}{\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\:\:\:\:\:\:\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\:\frac{\mathrm{1}−\left(−\mathrm{3}\right)^{{n}} }{\mathrm{2}}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} \left(−\mathrm{3}\right)^{{n}} }{{n}!}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{pmatrix} \\ $$$$=\:\begin{pmatrix}{\:\:\:{e}^{−\mathrm{1}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\left(\:\:{e}^{−\mathrm{1}} −{e}^{\mathrm{3}} \right)\:\:\:\:}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}^{\mathrm{3}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{pmatrix} \\ $$

Answered by mind is power last updated on 17/Nov/19

det(A−xI_2 )=0  let f(x,y)=(x+2y,−3y)  ⇒(1−x)(−3−x)=0⇒x∈{1,−3}  x=1  f(x,y)=(x,y)⇒y=0  e=(1,0)  f(x,y)=−3(x,y)⇒4x+2y=0⇒y=−2x  e_2 =(1,−2)  A=PDP^(−1)   P= (((1       1)),((0    −2)) ),P^− =−(1/2) (((−2      −1)),((0               1)) )  A=−(1/2) (((1      1)),((0    −2)) ). (((1      0)),((0 −3)) ). (((−2   −1)),((     0         1)) )  A^n =ePD^n P^−   e^A =Σ(A^k /(k!))=P(Σ_(k=0) ^(+∞) (D^k /(k!)).)P^− =P. (((e        0)),((0       e^(−3) )) ).P^−   e^(−A) =P(Σ_(k=0) ^(+∞) (((−D)^k )/(k!)))P^− =P. (((e^(−1)          0)),((0               e^3 )) ) P^−

$$\mathrm{det}\left(\mathrm{A}−\mathrm{xI}_{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\left(\mathrm{x}+\mathrm{2y},−\mathrm{3y}\right) \\ $$$$\Rightarrow\left(\mathrm{1}−\mathrm{x}\right)\left(−\mathrm{3}−\mathrm{x}\right)=\mathrm{0}\Rightarrow\mathrm{x}\in\left\{\mathrm{1},−\mathrm{3}\right\} \\ $$$$\mathrm{x}=\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\left(\mathrm{x},\mathrm{y}\right)\Rightarrow\mathrm{y}=\mathrm{0} \\ $$$$\mathrm{e}=\left(\mathrm{1},\mathrm{0}\right) \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=−\mathrm{3}\left(\mathrm{x},\mathrm{y}\right)\Rightarrow\mathrm{4x}+\mathrm{2y}=\mathrm{0}\Rightarrow\mathrm{y}=−\mathrm{2x} \\ $$$$\mathrm{e}_{\mathrm{2}} =\left(\mathrm{1},−\mathrm{2}\right) \\ $$$$\mathrm{A}=\mathrm{PDP}^{−\mathrm{1}} \\ $$$$\mathrm{P}=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{0}\:\:\:\:−\mathrm{2}}\end{pmatrix},\mathrm{P}^{−} =−\frac{\mathrm{1}}{\mathrm{2}}\begin{pmatrix}{−\mathrm{2}\:\:\:\:\:\:−\mathrm{1}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{A}=−\frac{\mathrm{1}}{\mathrm{2}}\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{0}\:\:\:\:−\mathrm{2}}\end{pmatrix}.\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:−\mathrm{3}}\end{pmatrix}.\begin{pmatrix}{−\mathrm{2}\:\:\:−\mathrm{1}}\\{\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{A}^{\mathrm{n}} =\mathrm{ePD}^{\mathrm{n}} \mathrm{P}^{−} \\ $$$$\mathrm{e}^{\mathrm{A}} =\Sigma\frac{\mathrm{A}^{\mathrm{k}} }{\mathrm{k}!}=\mathrm{P}\left(\underset{\mathrm{k}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\mathrm{D}^{\mathrm{k}} }{\mathrm{k}!}.\right)\mathrm{P}^{−} =\mathrm{P}.\begin{pmatrix}{\mathrm{e}\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\mathrm{e}^{−\mathrm{3}} }\end{pmatrix}.\mathrm{P}^{−} \\ $$$$\mathrm{e}^{−\mathrm{A}} =\mathrm{P}\left(\underset{\mathrm{k}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\left(−\mathrm{D}\right)^{\mathrm{k}} }{\mathrm{k}!}\right)\mathrm{P}^{−} =\mathrm{P}.\begin{pmatrix}{\mathrm{e}^{−\mathrm{1}} \:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{e}^{\mathrm{3}} }\end{pmatrix}\:\mathrm{P}^{−} \\ $$

Commented by abdomathmax last updated on 18/Nov/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com