Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 74352 by mathmax by abdo last updated on 22/Nov/19

let U_n =Σ_(k=0) ^n    (1/(k^2 +k+1))  find a equivalent of U_n    (n→+∞)

$${let}\:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{k}+\mathrm{1}}\:\:{find}\:{a}\:{equivalent}\:{of}\:{U}_{{n}} \:\:\:\left({n}\rightarrow+\infty\right) \\ $$$$ \\ $$

Answered by mind is power last updated on 24/Nov/19

let f(z)=(π/(z^2 +z+1)).cot(z)  we can find the value of the som  pols of f are Z∪{j,j^− }  Res(f,n∈Z)=(1/(n^2 +n+1))  ∣f(z)∣≤((∣coth(Re(z))∣)/(∣z^2 +z+1∣))→0   ∣z∣→∞  ⇒∫_C_R  f(z)dz=0    Res th⇒2iπΣ_(n∈Z) Res(f,n)+2iπRes(f,j,j^− )  Res(f,j)=  (π/((j−j^− ))).((cos(πj))/(sin(πj)))=(π/(i(√3))).((cos(−(π/2)+i((√3)/2)))/(sin(−(π/2)+i(√(3/4)))))=−(π/(i(√3))).((sin(0.5i(√3)))/(cos(((i(√3))/2))))  −(π/(√3)).th(((√3)/2))  Res(f,j^− )=(π/(j−j^− )).((cos(((−π)/2)−((i(√3))/2)))/(sin(−(π/2)−i((√3)/2))))=(π/(i(√3))).((−sin(((i(√3))/2)))/(−cos(((i(√3))/2))))=−(π/(√3))th(((√3)/2))  ⇒2iπΣ_(n∈Z) (1/(1+n+n^2 ))+2iπ(−((2π)/(√3)).th(((√3)/2)))=0  ⇒Σ_(n∈Z) (1/(1+n+n^2 ))=((2π)/(√3)).th(((√3)/2))  Σ_(n∈N) (1/(1+n+n^2 ))+Σ_(n∈N^∗ ) (1/(1−n+n^2 ))=Σ_(n∈Z) (1/(1+n+n^2 ))   ⇒Σ_(n∈N^∗ ) (1/(1−n+n^2 ))=Σ_(n∈N^∗ ) (1/((n−1)+1+(n−1)^2 ))=Σ_(n∈N) (1/(1+n+n^2 ))  ⇒2Σ_(n∈N) (1/(1+n+n^2 ))=((2π)/(√3)).th(((√3)/2))⇒Σ_(n∈N) (1/(1+n+n^2 ))=(π/(√3))th(((√3)/2))

$${let}\:{f}\left({z}\right)=\frac{\pi}{{z}^{\mathrm{2}} +{z}+\mathrm{1}}.{cot}\left({z}\right) \\ $$$${we}\:{can}\:{find}\:{the}\:{value}\:{of}\:{the}\:{som} \\ $$$${pols}\:{of}\:{f}\:{are}\:\mathbb{Z}\cup\left\{{j},\overset{−} {{j}}\right\} \\ $$$${Res}\left({f},{n}\in\mathbb{Z}\right)=\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{n}+\mathrm{1}} \\ $$$$\mid{f}\left({z}\right)\mid\leqslant\frac{\mid{coth}\left({Re}\left({z}\right)\right)\mid}{\mid{z}^{\mathrm{2}} +{z}+\mathrm{1}\mid}\rightarrow\mathrm{0}\:\:\:\mid{z}\mid\rightarrow\infty \\ $$$$\Rightarrow\int_{{C}_{{R}} } {f}\left({z}\right){dz}=\mathrm{0}\:\:\:\:{Res}\:{th}\Rightarrow\mathrm{2}{i}\pi\underset{{n}\in\mathbb{Z}} {\sum}{Res}\left({f},{n}\right)+\mathrm{2}{i}\pi{Res}\left({f},{j},\overset{−} {{j}}\right) \\ $$$${Res}\left({f},{j}\right)= \\ $$$$\frac{\pi}{\left({j}−\overset{−} {{j}}\right)}.\frac{{cos}\left(\pi{j}\right)}{{sin}\left(\pi{j}\right)}=\frac{\pi}{{i}\sqrt{\mathrm{3}}}.\frac{{cos}\left(−\frac{\pi}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}{{sin}\left(−\frac{\pi}{\mathrm{2}}+{i}\sqrt{\frac{\mathrm{3}}{\mathrm{4}}}\right)}=−\frac{\pi}{{i}\sqrt{\mathrm{3}}}.\frac{{sin}\left(\mathrm{0}.\mathrm{5}{i}\sqrt{\mathrm{3}}\right)}{{cos}\left(\frac{{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} \\ $$$$−\frac{\pi}{\sqrt{\mathrm{3}}}.{th}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$${Res}\left({f},\overset{−} {{j}}\right)=\frac{\pi}{{j}−\overset{−} {{j}}}.\frac{{cos}\left(\frac{−\pi}{\mathrm{2}}−\frac{{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}{{sin}\left(−\frac{\pi}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}=\frac{\pi}{{i}\sqrt{\mathrm{3}}}.\frac{−{sin}\left(\frac{{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}{−{cos}\left(\frac{{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}=−\frac{\pi}{\sqrt{\mathrm{3}}}{th}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\mathrm{2}{i}\pi\underset{{n}\in\mathbb{Z}} {\sum}\frac{\mathrm{1}}{\mathrm{1}+{n}+{n}^{\mathrm{2}} }+\mathrm{2}{i}\pi\left(−\frac{\mathrm{2}\pi}{\sqrt{\mathrm{3}}}.{th}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\right)=\mathrm{0} \\ $$$$\Rightarrow\underset{{n}\in\mathbb{Z}} {\sum}\frac{\mathrm{1}}{\mathrm{1}+{n}+{n}^{\mathrm{2}} }=\frac{\mathrm{2}\pi}{\sqrt{\mathrm{3}}}.{th}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$\underset{{n}\in\mathbb{N}} {\sum}\frac{\mathrm{1}}{\mathrm{1}+{n}+{n}^{\mathrm{2}} }+\underset{{n}\in\mathbb{N}^{\ast} } {\sum}\frac{\mathrm{1}}{\mathrm{1}−{n}+{n}^{\mathrm{2}} }=\underset{{n}\in\mathbb{Z}} {\sum}\frac{\mathrm{1}}{\mathrm{1}+{n}+{n}^{\mathrm{2}} }\: \\ $$$$\Rightarrow\underset{{n}\in\mathbb{N}^{\ast} } {\sum}\frac{\mathrm{1}}{\mathrm{1}−{n}+{n}^{\mathrm{2}} }=\underset{{n}\in\mathbb{N}^{\ast} } {\sum}\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)+\mathrm{1}+\left({n}−\mathrm{1}\right)^{\mathrm{2}} }=\underset{{n}\in\mathbb{N}} {\sum}\frac{\mathrm{1}}{\mathrm{1}+{n}+{n}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{2}\underset{{n}\in\mathbb{N}} {\sum}\frac{\mathrm{1}}{\mathrm{1}+{n}+{n}^{\mathrm{2}} }=\frac{\mathrm{2}\pi}{\sqrt{\mathrm{3}}}.{th}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\Rightarrow\underset{{n}\in\mathbb{N}} {\sum}\frac{\mathrm{1}}{\mathrm{1}+{n}+{n}^{\mathrm{2}} }=\frac{\pi}{\sqrt{\mathrm{3}}}{th}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by abdomathmax last updated on 24/Nov/19

thankx sir.

$${thankx}\:{sir}. \\ $$

Commented by mind is power last updated on 24/Nov/19

y′re welcom

$${y}'{re}\:{welcom} \\ $$

Commented by mathmax by abdo last updated on 24/Nov/19

f(z)=((πcotan(πz))/(z^2 +z+1))

$${f}\left({z}\right)=\frac{\pi{cotan}\left(\pi{z}\right)}{{z}^{\mathrm{2}} +{z}+\mathrm{1}} \\ $$

Commented by mind is power last updated on 02/Dec/19

yes sir

$$\mathrm{yes}\:\mathrm{sir} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com