Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 76963 by peter frank last updated on 01/Jan/20

∫cos 2θ ln (((cos θ+sin θ)/(cos θ−sin θ)))

$$\int\mathrm{cos}\:\mathrm{2}\theta\:\mathrm{ln}\:\left(\frac{\mathrm{cos}\:\theta+\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta−\mathrm{sin}\:\theta}\right) \\ $$

Answered by MJS last updated on 02/Jan/20

∫cos 2θ ln ((cos θ +sin θ)/(cos θ −sin θ)) dθ=  =∫cos 2θ ln ((cos 2θ)/(1−sin 2θ)) dθ=       by parts       u=ln ((cos 2θ)/(1−sin 2θ)) → u′=(2/(cos 2θ))       v′=cos 2θ → v=((sin 2θ)/2)  =(1/2)sin 2θ ln ((cos 2θ)/(1−sin 2θ)) −∫tan 2θ dθ=  =(1/2)sin 2θ ln ((cos 2θ)/(1−sin 2θ)) −(1/2)ln cos 2θ =  =(1/2)(sin 2θ ln ((cos 2θ)/(1−sin 2θ)) −ln cos 2θ) +C

$$\int\mathrm{cos}\:\mathrm{2}\theta\:\mathrm{ln}\:\frac{\mathrm{cos}\:\theta\:+\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta\:−\mathrm{sin}\:\theta}\:{d}\theta= \\ $$$$=\int\mathrm{cos}\:\mathrm{2}\theta\:\mathrm{ln}\:\frac{\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{1}−\mathrm{sin}\:\mathrm{2}\theta}\:{d}\theta= \\ $$$$\:\:\:\:\:\mathrm{by}\:\mathrm{parts} \\ $$$$\:\:\:\:\:{u}=\mathrm{ln}\:\frac{\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{1}−\mathrm{sin}\:\mathrm{2}\theta}\:\rightarrow\:{u}'=\frac{\mathrm{2}}{\mathrm{cos}\:\mathrm{2}\theta} \\ $$$$\:\:\:\:\:{v}'=\mathrm{cos}\:\mathrm{2}\theta\:\rightarrow\:{v}=\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}\theta\:\mathrm{ln}\:\frac{\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{1}−\mathrm{sin}\:\mathrm{2}\theta}\:−\int\mathrm{tan}\:\mathrm{2}\theta\:{d}\theta= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}\theta\:\mathrm{ln}\:\frac{\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{1}−\mathrm{sin}\:\mathrm{2}\theta}\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{cos}\:\mathrm{2}\theta\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{sin}\:\mathrm{2}\theta\:\mathrm{ln}\:\frac{\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{1}−\mathrm{sin}\:\mathrm{2}\theta}\:−\mathrm{ln}\:\mathrm{cos}\:\mathrm{2}\theta\right)\:+{C} \\ $$

Commented by john santu last updated on 02/Jan/20

Commented by john santu last updated on 02/Jan/20

to Mr MJS

$${to}\:{Mr}\:{MJS}\: \\ $$

Commented by peter frank last updated on 02/Jan/20

thank you

$${thank}\:{you} \\ $$

Commented by MJS last updated on 02/Jan/20

I get lim_(x→∞) =(1/2)  by calculating f^(−1) (x) and then approximating

$$\mathrm{I}\:\mathrm{get}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{by}\:\mathrm{calculating}\:{f}^{−\mathrm{1}} \left({x}\right)\:\mathrm{and}\:\mathrm{then}\:\mathrm{approximating} \\ $$

Commented by jagoll last updated on 02/Jan/20

how sir? please your write

$$\mathrm{how}\:\mathrm{sir}?\:\mathrm{please}\:\mathrm{your}\:\mathrm{write} \\ $$$$ \\ $$

Commented by MJS last updated on 02/Jan/20

y=8x^3 +3x  exchanging x⇌y  y^3 +(3/8)y−(x/8)=0  D=(p^3 /(27))+(q^2 /4)=(1/(512))+(x^2 /(256))≥0∀y∈R ⇒ Cardano′s firmula  ⇒  f^(−1) (x)=(1/(2(4)^(1/3) ))(((2x+(√(4x^2 +2))))^(1/3) −((−2x+(√(4x^2 +2))))^(1/3) )  g(x)=((f^(−1) (8x)−f^(−1) (x))/x^(1/3) )  g(10^1 )=.526706...  g(10^2 )=.505799...  g(10^3 )=.501249...  g(10^4 )=.500269...  g(10^5 )=.500058...  ...

$${y}=\mathrm{8}{x}^{\mathrm{3}} +\mathrm{3}{x} \\ $$$$\mathrm{exchanging}\:{x}\rightleftharpoons{y} \\ $$$${y}^{\mathrm{3}} +\frac{\mathrm{3}}{\mathrm{8}}{y}−\frac{{x}}{\mathrm{8}}=\mathrm{0} \\ $$$${D}=\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{512}}+\frac{{x}^{\mathrm{2}} }{\mathrm{256}}\geqslant\mathrm{0}\forall{y}\in\mathbb{R}\:\Rightarrow\:\mathrm{Cardano}'\mathrm{s}\:\mathrm{firmula} \\ $$$$\Rightarrow \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{4}}}\left(\sqrt[{\mathrm{3}}]{\mathrm{2}{x}+\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}}}−\sqrt[{\mathrm{3}}]{−\mathrm{2}{x}+\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}}}\right) \\ $$$${g}\left({x}\right)=\frac{{f}^{−\mathrm{1}} \left(\mathrm{8}{x}\right)−{f}^{−\mathrm{1}} \left({x}\right)}{{x}^{\mathrm{1}/\mathrm{3}} } \\ $$$${g}\left(\mathrm{10}^{\mathrm{1}} \right)=.\mathrm{526706}... \\ $$$${g}\left(\mathrm{10}^{\mathrm{2}} \right)=.\mathrm{505799}... \\ $$$${g}\left(\mathrm{10}^{\mathrm{3}} \right)=.\mathrm{501249}... \\ $$$${g}\left(\mathrm{10}^{\mathrm{4}} \right)=.\mathrm{500269}... \\ $$$${g}\left(\mathrm{10}^{\mathrm{5}} \right)=.\mathrm{500058}... \\ $$$$... \\ $$

Commented by MJS last updated on 02/Jan/20

...I do not understand your method...

$$...\mathrm{I}\:\mathrm{do}\:\mathrm{not}\:\mathrm{understand}\:\mathrm{your}\:\mathrm{method}... \\ $$

Commented by jagoll last updated on 02/Jan/20

sorry sir. by calculate i got result  ((4)^(1/3) /2) sir= not same (1/2)

$$\mathrm{sorry}\:\mathrm{sir}.\:\mathrm{by}\:\mathrm{calculate}\:\mathrm{i}\:\mathrm{got}\:\mathrm{result} \\ $$$$\frac{\sqrt[{\mathrm{3}}]{\mathrm{4}}}{\mathrm{2}}\:\mathrm{sir}=\:\mathrm{not}\:\mathrm{same}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by mr W last updated on 02/Jan/20

to john santu sir:  your step to  lim_(x→∞) [(8/(24(g(x))^2 +3))−(1/(24(h(x))^2 ×3))]×3x^(2/3)   is correct. but this doesn′t help you  further, since g(x)=f^( −1) (8x) and  h(x)=f^( −1) (x) are still unknown.  your last step to  =3×[(8/(24))−(1/(24))]  is wrong. how can you get this if  you don′t explictly know g(x) and  h(x)?

$${to}\:{john}\:{santu}\:{sir}: \\ $$$${your}\:{step}\:{to} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left[\frac{\mathrm{8}}{\mathrm{24}\left({g}\left({x}\right)\right)^{\mathrm{2}} +\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{24}\left({h}\left({x}\right)\right)^{\mathrm{2}} ×\mathrm{3}}\right]×\mathrm{3}{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$${is}\:{correct}.\:{but}\:{this}\:{doesn}'{t}\:{help}\:{you} \\ $$$${further},\:{since}\:{g}\left({x}\right)={f}^{\:−\mathrm{1}} \left(\mathrm{8}{x}\right)\:{and} \\ $$$${h}\left({x}\right)={f}^{\:−\mathrm{1}} \left({x}\right)\:{are}\:{still}\:{unknown}. \\ $$$${your}\:{last}\:{step}\:{to} \\ $$$$=\mathrm{3}×\left[\frac{\mathrm{8}}{\mathrm{24}}−\frac{\mathrm{1}}{\mathrm{24}}\right] \\ $$$${is}\:{wrong}.\:{how}\:{can}\:{you}\:{get}\:{this}\:{if} \\ $$$${you}\:{don}'{t}\:{explictly}\:{know}\:{g}\left({x}\right)\:{and} \\ $$$${h}\left({x}\right)? \\ $$

Commented by john santu last updated on 02/Jan/20

ok sir, i agree. i thought the degrees   g(x) and h(x) were the same, but   forgot the coefficients that might   not be equal to 1.

$${ok}\:{sir},\:{i}\:{agree}.\:{i}\:{thought}\:{the}\:{degrees}\: \\ $$$${g}\left({x}\right)\:{and}\:{h}\left({x}\right)\:{were}\:{the}\:{same},\:{but}\: \\ $$$${forgot}\:{the}\:{coefficients}\:{that}\:{might}\: \\ $$$${not}\:{be}\:{equal}\:{to}\:\mathrm{1}.\: \\ $$

Commented by mr W last updated on 02/Jan/20

the degrees of g(x) and h(x) could  be the same, but you have here  (g(x))^2  and (h(x))^2 , and we don′t  even know the degrees of them.  therefore we don′t know the values of  lim_(x→∞) (((g(x))^2 )/x^(2/3) ) and lim_(x→∞) (((h(x))^2 )/x^(2/3) ).

$${the}\:{degrees}\:{of}\:{g}\left({x}\right)\:{and}\:{h}\left({x}\right)\:{could} \\ $$$${be}\:{the}\:{same},\:{but}\:{you}\:{have}\:{here} \\ $$$$\left({g}\left({x}\right)\right)^{\mathrm{2}} \:{and}\:\left({h}\left({x}\right)\right)^{\mathrm{2}} ,\:{and}\:{we}\:{don}'{t} \\ $$$${even}\:{know}\:{the}\:{degrees}\:{of}\:{them}. \\ $$$${therefore}\:{we}\:{don}'{t}\:{know}\:{the}\:{values}\:{of} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\left({g}\left({x}\right)\right)^{\mathrm{2}} }{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} }\:{and}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\left({h}\left({x}\right)\right)^{\mathrm{2}} }{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} }. \\ $$

Commented by jagoll last updated on 03/Jan/20

sir i′m got f^(−1) (x)= (((4x+2(√(4x^2 +2)))^(2/3)  −2)/(4(4x+2(√(4x^2 +2)))^(2/3) ))

$${sir}\:{i}'{m}\:{got}\:{f}^{−\mathrm{1}} \left({x}\right)=\:\frac{\left(\mathrm{4}{x}+\mathrm{2}\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:−\mathrm{2}}{\mathrm{4}\left(\mathrm{4}{x}+\mathrm{2}\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} } \\ $$

Commented by MJS last updated on 03/Jan/20

how?  x^3 +px+q=0  Cardano′s solution  x=u+v  u=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3)   v=((−(q/2)−(√((p^3 /(27))+(q^2 /4)))))^(1/3)   u, v ∈R  (some calculators give the “wrong” root  i.e. ((−8))^(1/3) =−2 but ((8e^(iπ) ))^(1/3) =(8)^(1/3) e^(i(π/3)) =1+i(√3))

$$\mathrm{how}? \\ $$$${x}^{\mathrm{3}} +{px}+{q}=\mathrm{0} \\ $$$$\mathrm{Cardano}'\mathrm{s}\:\mathrm{solution} \\ $$$${x}={u}+{v} \\ $$$${u}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}+\sqrt{\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}}} \\ $$$${v}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}−\sqrt{\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}}} \\ $$$${u},\:{v}\:\in\mathbb{R} \\ $$$$\left(\mathrm{some}\:\mathrm{calculators}\:\mathrm{give}\:\mathrm{the}\:``\mathrm{wrong}''\:\mathrm{root}\right. \\ $$$$\left.\mathrm{i}.\mathrm{e}.\:\sqrt[{\mathrm{3}}]{−\mathrm{8}}=−\mathrm{2}\:\mathrm{but}\:\sqrt[{\mathrm{3}}]{\mathrm{8e}^{\mathrm{i}\pi} }=\sqrt[{\mathrm{3}}]{\mathrm{8}}\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{3}}} =\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com