Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 76974 by Maclaurin Stickker last updated on 02/Jan/20

Calculate the side of an equilateral  triangle whose vertices are situated  on three parallel coplanar lines,  knowing that a and b are the distances  of the parallel line to the others.

$${Calculate}\:{the}\:{side}\:{of}\:{an}\:{equilateral} \\ $$$${triangle}\:{whose}\:{vertices}\:{are}\:{situated} \\ $$$${on}\:{three}\:{parallel}\:{coplanar}\:{lines}, \\ $$$${knowing}\:{that}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}\:{are}\:{the}\:{distances} \\ $$$${of}\:{the}\:{parallel}\:{line}\:{to}\:{the}\:{others}. \\ $$

Answered by mr W last updated on 02/Jan/20

(√(l^2 −(a+b)^2 ))=(√(l^2 −b^2 ))−(√(l^2 −a^2 ))  l^2 −a^2 −b^2 −2ab=l^2 −b^2 +l^2 −a^2 −2(√((l^2 −b^2 )(l^2 −a^2 )))  l^2 +2ab=2(√((l^2 −b^2 )(l^2 −a^2 )))  l^4 +4abl^2 +4a^2 b^2 =4(l^2 −b^2 )(l^2 −a^2 )  3l^2 −4(a^2 +b^2 +ab)=0  ⇒l=2(√((a^2 +b^2 +ab)/3))

$$\sqrt{{l}^{\mathrm{2}} −\left({a}+{b}\right)^{\mathrm{2}} }=\sqrt{{l}^{\mathrm{2}} −{b}^{\mathrm{2}} }−\sqrt{{l}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$${l}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −\mathrm{2}{ab}={l}^{\mathrm{2}} −{b}^{\mathrm{2}} +{l}^{\mathrm{2}} −{a}^{\mathrm{2}} −\mathrm{2}\sqrt{\left({l}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({l}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)} \\ $$$${l}^{\mathrm{2}} +\mathrm{2}{ab}=\mathrm{2}\sqrt{\left({l}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({l}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)} \\ $$$${l}^{\mathrm{4}} +\mathrm{4}{abl}^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{4}\left({l}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({l}^{\mathrm{2}} −{a}^{\mathrm{2}} \right) \\ $$$$\mathrm{3}{l}^{\mathrm{2}} −\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{ab}\right)=\mathrm{0} \\ $$$$\Rightarrow{l}=\mathrm{2}\sqrt{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{ab}}{\mathrm{3}}} \\ $$

Commented by Maclaurin Stickker last updated on 02/Jan/20

how did you get the first expression?

$${how}\:{did}\:{you}\:{get}\:{the}\:{first}\:{expression}? \\ $$

Commented by mr W last updated on 02/Jan/20

Commented by mr W last updated on 02/Jan/20

AB=(√(l^2 −b^2 ))  CD=(√(l^2 −(a+b)^2 ))  DE=(√(l^2 −a^2 ))  CD+DE=AB  (√(l^2 −(a+b)^2 ))+(√(l^2 −a^2 ))=(√(l^2 −b^2 ))

$${AB}=\sqrt{{l}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$${CD}=\sqrt{{l}^{\mathrm{2}} −\left({a}+{b}\right)^{\mathrm{2}} } \\ $$$${DE}=\sqrt{{l}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$${CD}+{DE}={AB} \\ $$$$\sqrt{{l}^{\mathrm{2}} −\left({a}+{b}\right)^{\mathrm{2}} }+\sqrt{{l}^{\mathrm{2}} −{a}^{\mathrm{2}} }=\sqrt{{l}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com