Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 77242 by Tony Lin last updated on 04/Jan/20

prove that   ∫_0 ^a (√(2+(a/x)−2(√(a/x)) ))dx=a[(1/(√2))ln((√2)+1)+1]

$${prove}\:{that} \\ $$$$\:\int_{\mathrm{0}} ^{{a}} \sqrt{\mathrm{2}+\frac{{a}}{{x}}−\mathrm{2}\sqrt{\frac{{a}}{{x}}}\:}{dx}={a}\left[\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{ln}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)+\mathrm{1}\right] \\ $$

Commented by mathmax by abdo last updated on 04/Jan/20

let f(a)=∫_0 ^a (√(2+(a/x)−2(√(a/x))))dx  changement (√(a/x))=t hive  (a/x) =t^2  ⇒a=xt^2  ⇒x=at^(−2)  ⇒dx =−2at^(−3)  dt and  f(a)=∫_0 ^1 (√(2+t^2 −2t))(−2a)t^(−3 ) dt  =(−2a)∫_0 ^1 (√(t^2 −2t+1+1))t^(−3)  dt =−2a∫_0 ^1 (√((t−1)^2 +1))t^(−3)  dt  =_(t−1 =sh(u))   −2a ∫_(argsh(−1)) ^0 ch(u)(1+sh(u))^(−3)  ch(u)du  =−2a ∫_(−ln(1+(√2))) ^0  ch^2 u(1+sh(u))^2  du  =−2a ∫_(−ln(1+(√2))) ^0  ch^2 u(1+2shu +sh^2 u)du  =−2a∫_(−ln(1+(√2))) ^0  ch^2 u du −4a ∫_(−ln(1+(√2))) ^0  shu ch^2 udu  −2a∫_(−ln(1+(√2))) ^0  sh^2 u ch^2 u du  =−2a∫_(−ln(1+(√2))) ^0 ((ch(2u)+1)/2)du −4a [(1/3)ch^3 u]_(−ln(1+(√2))) ^0   −(a/2) ∫_(−ln(1+(√2))) ^0  sh^2 u du   =a [u+(1/2)shu]_(−ln(1+(√2))) ^0 −((4a)/3)[((e^(3u) +e^(−3u) )/2)]_(−ln(1+(√2))) ^0   −(a/2)∫_(−ln(1+(√2))) ^0  ((ch(2u)−1)/2)du  rest to achieve the calculus...

$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{{a}} \sqrt{\mathrm{2}+\frac{{a}}{{x}}−\mathrm{2}\sqrt{\frac{{a}}{{x}}}}{dx}\:\:{changement}\:\sqrt{\frac{{a}}{{x}}}={t}\:{hive} \\ $$$$\frac{{a}}{{x}}\:={t}^{\mathrm{2}} \:\Rightarrow{a}={xt}^{\mathrm{2}} \:\Rightarrow{x}={at}^{−\mathrm{2}} \:\Rightarrow{dx}\:=−\mathrm{2}{at}^{−\mathrm{3}} \:{dt}\:{and} \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{2}+{t}^{\mathrm{2}} −\mathrm{2}{t}}\left(−\mathrm{2}{a}\right){t}^{−\mathrm{3}\:} {dt} \\ $$$$=\left(−\mathrm{2}{a}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}+\mathrm{1}}{t}^{−\mathrm{3}} \:{dt}\:=−\mathrm{2}{a}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\left({t}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}{t}^{−\mathrm{3}} \:{dt} \\ $$$$=_{{t}−\mathrm{1}\:={sh}\left({u}\right)} \:\:−\mathrm{2}{a}\:\int_{{argsh}\left(−\mathrm{1}\right)} ^{\mathrm{0}} {ch}\left({u}\right)\left(\mathrm{1}+{sh}\left({u}\right)\right)^{−\mathrm{3}} \:{ch}\left({u}\right){du} \\ $$$$=−\mathrm{2}{a}\:\int_{−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{\mathrm{0}} \:{ch}^{\mathrm{2}} {u}\left(\mathrm{1}+{sh}\left({u}\right)\right)^{\mathrm{2}} \:{du} \\ $$$$=−\mathrm{2}{a}\:\int_{−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{\mathrm{0}} \:{ch}^{\mathrm{2}} {u}\left(\mathrm{1}+\mathrm{2}{shu}\:+{sh}^{\mathrm{2}} {u}\right){du} \\ $$$$=−\mathrm{2}{a}\int_{−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{\mathrm{0}} \:{ch}^{\mathrm{2}} {u}\:{du}\:−\mathrm{4}{a}\:\int_{−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{\mathrm{0}} \:{shu}\:{ch}^{\mathrm{2}} {udu} \\ $$$$−\mathrm{2}{a}\int_{−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{\mathrm{0}} \:{sh}^{\mathrm{2}} {u}\:{ch}^{\mathrm{2}} {u}\:{du} \\ $$$$=−\mathrm{2}{a}\int_{−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{\mathrm{0}} \frac{{ch}\left(\mathrm{2}{u}\right)+\mathrm{1}}{\mathrm{2}}{du}\:−\mathrm{4}{a}\:\left[\frac{\mathrm{1}}{\mathrm{3}}{ch}^{\mathrm{3}} {u}\right]_{−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{\mathrm{0}} \\ $$$$−\frac{{a}}{\mathrm{2}}\:\int_{−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{\mathrm{0}} \:{sh}^{\mathrm{2}} {u}\:{du}\: \\ $$$$={a}\:\left[{u}+\frac{\mathrm{1}}{\mathrm{2}}{shu}\right]_{−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{\mathrm{0}} −\frac{\mathrm{4}{a}}{\mathrm{3}}\left[\frac{{e}^{\mathrm{3}{u}} +{e}^{−\mathrm{3}{u}} }{\mathrm{2}}\right]_{−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{\mathrm{0}} \\ $$$$−\frac{{a}}{\mathrm{2}}\int_{−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{\mathrm{0}} \:\frac{{ch}\left(\mathrm{2}{u}\right)−\mathrm{1}}{\mathrm{2}}{du}\:\:{rest}\:{to}\:{achieve}\:{the}\:{calculus}... \\ $$

Commented by Tony Lin last updated on 05/Jan/20

thanks sir

$${thanks}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 05/Jan/20

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Answered by MJS last updated on 05/Jan/20

a≥0∧x>0 ∨ a≤0∧x<0  ⇒  ∫(√(2+(a/x)−2(√(a/x))))dx=∫((√(2x−2(√(ax))+a))/(√x))dx=       [t=(√x) → dx=2(√x)dt]  =2∫(√(t^2 −2(√a)t+a))dt=  =((2t−(√a))/2)(√(2t^2 −2(√a)t+a))+((√2)/4)aln (2t−(√a)+(√(4t^2 −4(√a)t+2a))) =  =((2(√x)−(√a))/2)(√(2x−2(√(ax))+a))+((√2)/4)aln (2(√x)−(√a)+(√(4x−4(√(ax))+2a))) +C  now just insert the values x=[0; a]

$${a}\geqslant\mathrm{0}\wedge{x}>\mathrm{0}\:\vee\:{a}\leqslant\mathrm{0}\wedge{x}<\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\int\sqrt{\mathrm{2}+\frac{{a}}{{x}}−\mathrm{2}\sqrt{\frac{{a}}{{x}}}}{dx}=\int\frac{\sqrt{\mathrm{2}{x}−\mathrm{2}\sqrt{{ax}}+{a}}}{\sqrt{{x}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{{x}}\:\rightarrow\:{dx}=\mathrm{2}\sqrt{{x}}{dt}\right] \\ $$$$=\mathrm{2}\int\sqrt{{t}^{\mathrm{2}} −\mathrm{2}\sqrt{{a}}{t}+{a}}{dt}= \\ $$$$=\frac{\mathrm{2}{t}−\sqrt{{a}}}{\mathrm{2}}\sqrt{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}\sqrt{{a}}{t}+{a}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}{a}\mathrm{ln}\:\left(\mathrm{2}{t}−\sqrt{{a}}+\sqrt{\mathrm{4}{t}^{\mathrm{2}} −\mathrm{4}\sqrt{{a}}{t}+\mathrm{2}{a}}\right)\:= \\ $$$$=\frac{\mathrm{2}\sqrt{{x}}−\sqrt{{a}}}{\mathrm{2}}\sqrt{\mathrm{2}{x}−\mathrm{2}\sqrt{{ax}}+{a}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}{a}\mathrm{ln}\:\left(\mathrm{2}\sqrt{{x}}−\sqrt{{a}}+\sqrt{\mathrm{4}{x}−\mathrm{4}\sqrt{{ax}}+\mathrm{2}{a}}\right)\:+{C} \\ $$$$\mathrm{now}\:\mathrm{just}\:\mathrm{insert}\:\mathrm{the}\:\mathrm{values}\:{x}=\left[\mathrm{0};\:{a}\right] \\ $$

Commented by Tony Lin last updated on 05/Jan/20

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com