Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 77252 by Maclaurin Stickker last updated on 04/Jan/20

Commented by Maclaurin Stickker last updated on 04/Jan/20

I don′t want the answer, I want a tip  on how to solve.

$${I}\:{don}'{t}\:{want}\:{the}\:{answer},\:{I}\:{want}\:{a}\:{tip} \\ $$$${on}\:{how}\:{to}\:{solve}.\: \\ $$

Commented by Maclaurin Stickker last updated on 04/Jan/20

I tried to find the radius of the  largest circumference as a function  of the radius of the yellow  circumference but the results weren′t  good...

$${I}\:{tried}\:{to}\:{find}\:{the}\:{radius}\:{of}\:{the} \\ $$$${largest}\:{circumference}\:{as}\:{a}\:{function} \\ $$$${of}\:{the}\:{radius}\:{of}\:{the}\:{yellow} \\ $$$${circumference}\:{but}\:{the}\:{results}\:{weren}'{t} \\ $$$${good}... \\ $$

Answered by mr W last updated on 05/Jan/20

Commented by Maclaurin Stickker last updated on 05/Jan/20

sir, I used  (A/(B ))=4 and I got  (9/(20))    is my answer right?

$${sir},\:{I}\:{used}\:\:\frac{{A}}{{B}\:}=\mathrm{4}\:{and}\:{I}\:{got}\:\:\frac{\mathrm{9}}{\mathrm{20}}\:\: \\ $$$${is}\:{my}\:{answer}\:{right}? \\ $$$$ \\ $$

Commented by mr W last updated on 05/Jan/20

O as origin and OF as x−axis  x_A =−R+r_a   x_C =2r_a −R  x_B ^2 +y_B ^2 =(R−r_b )^2   (x_B +R−r_a )^2 +y_B ^2 =(r_a +r_b )^2   (x_B +R−r_a )^2 −x_B ^2 =(r_a +r_b )^2 −(R−r_b )^2   ⇒(2x_B +R−r_a )(R−r_a )=(R+r_a )(r_a +2r_b −R)  ⇒x_B =(((R+r_a )(2r_b −R+r_a )−(R−r_a )^2 )/(2(R−r_a )))  ⇒y_B =(√((R−r_b )^2 −x_B ^2 ))    CF=2(R−r_a )  ((EF)/(GF))=((2R)/(EF)) ⇒ EF^2 =2R(R−r_a )  EG^2 =EF^2 −GF^2 =2R(R−r_a )−(R−r_a )^2   EG^2 =(R−r_a )(R+r_a )=R^2 −r_a ^2   ⇒EG=(√(R^2 −r_a ^2 ))  m=tan ∠ECG=((EG)/(CG))=((√(R^2 −r_a ^2 ))/(R−r_a ))=(√((R+r_a )/(R−r_a )))  x_C =2r_a −R  eqn. of CE:  y=m(x−x_C )  ⇒mx−y−m(2r_a −R)=0  r_b =((m(x_B +R−2r_a )−y_B )/(√(1+m^2 )))  r_b =(((√((R−r_a )/(R+r_a )))(x_B +R−2r_a )−y_B )/(√((2R)/(R+r_a ))))  ⇒r_b =(√((R−r_a )/(2R)))(x_B +R−2r_a )−(√((R+r_a )/(2R)))y_B   let α=(r_a /R), β=(r_b /R)  (x_B /R)=μ=(((1+α)(2β−1+α)−(1−α)^2 )/(2(1−α)))  (y_B /R)=ν=(√((1−β)^2 −μ^2 ))  ⇒β=(√((1−α)/2))(μ+1−2α)−(√((1+α)/2))ν  ......

$${O}\:{as}\:{origin}\:{and}\:{OF}\:{as}\:{x}−{axis} \\ $$$${x}_{{A}} =−{R}+{r}_{{a}} \\ $$$${x}_{{C}} =\mathrm{2}{r}_{{a}} −{R} \\ $$$${x}_{{B}} ^{\mathrm{2}} +{y}_{{B}} ^{\mathrm{2}} =\left({R}−{r}_{{b}} \right)^{\mathrm{2}} \\ $$$$\left({x}_{{B}} +{R}−{r}_{{a}} \right)^{\mathrm{2}} +{y}_{{B}} ^{\mathrm{2}} =\left({r}_{{a}} +{r}_{{b}} \right)^{\mathrm{2}} \\ $$$$\left({x}_{{B}} +{R}−{r}_{{a}} \right)^{\mathrm{2}} −{x}_{{B}} ^{\mathrm{2}} =\left({r}_{{a}} +{r}_{{b}} \right)^{\mathrm{2}} −\left({R}−{r}_{{b}} \right)^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{2}{x}_{{B}} +{R}−{r}_{{a}} \right)\left({R}−{r}_{{a}} \right)=\left({R}+{r}_{{a}} \right)\left({r}_{{a}} +\mathrm{2}{r}_{{b}} −{R}\right) \\ $$$$\Rightarrow{x}_{{B}} =\frac{\left({R}+{r}_{{a}} \right)\left(\mathrm{2}{r}_{{b}} −{R}+{r}_{{a}} \right)−\left({R}−{r}_{{a}} \right)^{\mathrm{2}} }{\mathrm{2}\left({R}−{r}_{{a}} \right)} \\ $$$$\Rightarrow{y}_{{B}} =\sqrt{\left({R}−{r}_{{b}} \right)^{\mathrm{2}} −{x}_{{B}} ^{\mathrm{2}} } \\ $$$$ \\ $$$${CF}=\mathrm{2}\left({R}−{r}_{{a}} \right) \\ $$$$\frac{{EF}}{{GF}}=\frac{\mathrm{2}{R}}{{EF}}\:\Rightarrow\:{EF}^{\mathrm{2}} =\mathrm{2}{R}\left({R}−{r}_{{a}} \right) \\ $$$${EG}^{\mathrm{2}} ={EF}^{\mathrm{2}} −{GF}^{\mathrm{2}} =\mathrm{2}{R}\left({R}−{r}_{{a}} \right)−\left({R}−{r}_{{a}} \right)^{\mathrm{2}} \\ $$$${EG}^{\mathrm{2}} =\left({R}−{r}_{{a}} \right)\left({R}+{r}_{{a}} \right)={R}^{\mathrm{2}} −{r}_{{a}} ^{\mathrm{2}} \\ $$$$\Rightarrow{EG}=\sqrt{{R}^{\mathrm{2}} −{r}_{{a}} ^{\mathrm{2}} } \\ $$$${m}=\mathrm{tan}\:\angle{ECG}=\frac{{EG}}{{CG}}=\frac{\sqrt{{R}^{\mathrm{2}} −{r}_{{a}} ^{\mathrm{2}} }}{{R}−{r}_{{a}} }=\sqrt{\frac{{R}+{r}_{{a}} }{{R}−{r}_{{a}} }} \\ $$$${x}_{{C}} =\mathrm{2}{r}_{{a}} −{R} \\ $$$${eqn}.\:{of}\:{CE}: \\ $$$${y}={m}\left({x}−{x}_{{C}} \right) \\ $$$$\Rightarrow{mx}−{y}−{m}\left(\mathrm{2}{r}_{{a}} −{R}\right)=\mathrm{0} \\ $$$${r}_{{b}} =\frac{{m}\left({x}_{{B}} +{R}−\mathrm{2}{r}_{{a}} \right)−{y}_{{B}} }{\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }} \\ $$$${r}_{{b}} =\frac{\sqrt{\frac{{R}−{r}_{{a}} }{{R}+{r}_{{a}} }}\left({x}_{{B}} +{R}−\mathrm{2}{r}_{{a}} \right)−{y}_{{B}} }{\sqrt{\frac{\mathrm{2}{R}}{{R}+{r}_{{a}} }}} \\ $$$$\Rightarrow{r}_{{b}} =\sqrt{\frac{{R}−{r}_{{a}} }{\mathrm{2}{R}}}\left({x}_{{B}} +{R}−\mathrm{2}{r}_{{a}} \right)−\sqrt{\frac{{R}+{r}_{{a}} }{\mathrm{2}{R}}}{y}_{{B}} \\ $$$${let}\:\alpha=\frac{{r}_{{a}} }{{R}},\:\beta=\frac{{r}_{{b}} }{{R}} \\ $$$$\frac{{x}_{{B}} }{{R}}=\mu=\frac{\left(\mathrm{1}+\alpha\right)\left(\mathrm{2}\beta−\mathrm{1}+\alpha\right)−\left(\mathrm{1}−\alpha\right)^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{1}−\alpha\right)} \\ $$$$\frac{{y}_{{B}} }{{R}}=\nu=\sqrt{\left(\mathrm{1}−\beta\right)^{\mathrm{2}} −\mu^{\mathrm{2}} } \\ $$$$\Rightarrow\beta=\sqrt{\frac{\mathrm{1}−\alpha}{\mathrm{2}}}\left(\mu+\mathrm{1}−\mathrm{2}\alpha\right)−\sqrt{\frac{\mathrm{1}+\alpha}{\mathrm{2}}}\nu \\ $$$$...... \\ $$

Commented by mr W last updated on 05/Jan/20

exact solution seems impossible.

$${exact}\:{solution}\:{seems}\:{impossible}. \\ $$

Commented by Maclaurin Stickker last updated on 05/Jan/20

is BC perpendicular to OC? I think so..

$${is}\:{BC}\:{perpendicular}\:{to}\:{OC}?\:{I}\:{think}\:{so}.. \\ $$

Commented by Maclaurin Stickker last updated on 05/Jan/20

Doesn′t (A/B)∈{4, 1, (9/(16))} mean that  (A/B)=4, (A/B)=1 or (A/B)=(9/(16))?

$${Doesn}'{t}\:\frac{{A}}{{B}}\in\left\{\mathrm{4},\:\mathrm{1},\:\frac{\mathrm{9}}{\mathrm{16}}\right\}\:{mean}\:{that} \\ $$$$\frac{{A}}{{B}}=\mathrm{4},\:\frac{{A}}{{B}}=\mathrm{1}\:{or}\:\frac{{A}}{{B}}=\frac{\mathrm{9}}{\mathrm{16}}? \\ $$

Commented by mr W last updated on 05/Jan/20

BC is not perpendicular to OC!  you can see this clearly if r_b =r_(a.)

$${BC}\:{is}\:{not}\:{perpendicular}\:{to}\:{OC}! \\ $$$${you}\:{can}\:{see}\:{this}\:{clearly}\:{if}\:{r}_{{b}} ={r}_{{a}.} \\ $$

Commented by Maclaurin Stickker last updated on 05/Jan/20

If r_a ≠r_b  BC could be perpendicular  to OC?

$${If}\:{r}_{{a}} \neq{r}_{{b}} \:{BC}\:{could}\:{be}\:{perpendicular} \\ $$$${to}\:{OC}? \\ $$

Commented by mr W last updated on 06/Jan/20

not generally!

$${not}\:{generally}! \\ $$

Commented by Tawa11 last updated on 29/Dec/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com