Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 77472 by mathocean1 last updated on 06/Jan/20

Hello sirs...   i want that you explain me how    we solve the trigonometric  inequality with tangente.   we can take for example tan2x≥(√3)  i can solve this type of equality  but not the inequality! Please   i need your help... Even the steps  to make graphic to read the solu−  tion.

$$\mathrm{Hello}\:\mathrm{sirs}...\: \\ $$$$\mathrm{i}\:\mathrm{want}\:\mathrm{that}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{me}\:\mathrm{how}\: \\ $$$$\:\mathrm{we}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{trigonometric} \\ $$$$\mathrm{inequality}\:\mathrm{with}\:\mathrm{tangente}.\: \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{take}\:\mathrm{for}\:\mathrm{example}\:\mathrm{tan2x}\geqslant\sqrt{\mathrm{3}} \\ $$$$\mathrm{i}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{type}\:\mathrm{of}\:\mathrm{equality} \\ $$$$\mathrm{but}\:\mathrm{not}\:\mathrm{the}\:\mathrm{inequality}!\:\mathrm{Please}\: \\ $$$$\mathrm{i}\:\mathrm{need}\:\mathrm{your}\:\mathrm{help}...\:\mathrm{Even}\:\mathrm{the}\:\mathrm{steps} \\ $$$$\mathrm{to}\:\mathrm{make}\:\mathrm{graphic}\:\mathrm{to}\:\mathrm{read}\:\mathrm{the}\:\mathrm{solu}− \\ $$$$\mathrm{tion}. \\ $$

Commented by MJS last updated on 06/Jan/20

(1) solve the equality for x within one period       tan 2x =(√3); −(π/4)≤x<(π/4)       ⇒ x=(π/6)  (2) calculate the gradient of the curve       (d/dx)[tan 2x]=(2/(cos^2  2x))>0∀x∈R\{−(π/4)+(π/2)n}; n∈Z       also tan 2x is not defined for x=−(π/4)+(π/2)n       ⇒ within this period tan 2x ≥(√3) with (π/6)≤x<(π/4)       ⇒ tan 2x ≥(√3) with (π/6)+(π/2)n≤x<(π/4)+(π/2)n; n∈Z

$$\left(\mathrm{1}\right)\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equality}\:\mathrm{for}\:{x}\:\mathrm{within}\:\mathrm{one}\:\mathrm{period} \\ $$$$\:\:\:\:\:\mathrm{tan}\:\mathrm{2}{x}\:=\sqrt{\mathrm{3}};\:−\frac{\pi}{\mathrm{4}}\leqslant{x}<\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\:\:\Rightarrow\:{x}=\frac{\pi}{\mathrm{6}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{gradient}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\:\:\:\:\:\frac{{d}}{{dx}}\left[\mathrm{tan}\:\mathrm{2}{x}\right]=\frac{\mathrm{2}}{\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}{x}}>\mathrm{0}\forall{x}\in\mathbb{R}\backslash\left\{−\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{2}}{n}\right\};\:{n}\in\mathbb{Z} \\ $$$$\:\:\:\:\:\mathrm{also}\:\mathrm{tan}\:\mathrm{2}{x}\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\:\mathrm{for}\:{x}=−\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{2}}{n} \\ $$$$\:\:\:\:\:\Rightarrow\:\mathrm{within}\:\mathrm{this}\:\mathrm{period}\:\mathrm{tan}\:\mathrm{2}{x}\:\geqslant\sqrt{\mathrm{3}}\:\mathrm{with}\:\frac{\pi}{\mathrm{6}}\leqslant{x}<\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\:\:\Rightarrow\:\mathrm{tan}\:\mathrm{2}{x}\:\geqslant\sqrt{\mathrm{3}}\:\mathrm{with}\:\frac{\pi}{\mathrm{6}}+\frac{\pi}{\mathrm{2}}{n}\leqslant{x}<\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{2}}{n};\:{n}\in\mathbb{Z} \\ $$

Commented by mathocean1 last updated on 06/Jan/20

Thank very much...

$$\mathrm{Thank}\:\mathrm{very}\:\mathrm{much}... \\ $$

Commented by mathocean1 last updated on 06/Jan/20

I haven”t studied about gradient  of curve sir... what is it?

$$\mathrm{I}\:\mathrm{haven}''\mathrm{t}\:\mathrm{studied}\:\mathrm{about}\:\mathrm{gradient} \\ $$$$\mathrm{of}\:\mathrm{curve}\:\mathrm{sir}...\:\mathrm{what}\:\mathrm{is}\:\mathrm{it}? \\ $$

Commented by MJS last updated on 06/Jan/20

the gradient in a point of the curve is the  value of the derivate  P= ((p),((f(p))) ) ⇒ gradient = f ′(p)  f ′(p)>0 ⇒ curve is increasing in P  f ′(p)=0 ⇒ curve is flat in P  f ′(p)<0 ⇒ curve is decreasing in P

$$\mathrm{the}\:\mathrm{gradient}\:\mathrm{in}\:\mathrm{a}\:\mathrm{point}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{derivate} \\ $$$${P}=\begin{pmatrix}{{p}}\\{{f}\left({p}\right)}\end{pmatrix}\:\Rightarrow\:\mathrm{gradient}\:=\:{f}\:'\left({p}\right) \\ $$$${f}\:'\left({p}\right)>\mathrm{0}\:\Rightarrow\:\mathrm{curve}\:\mathrm{is}\:\mathrm{increasing}\:\mathrm{in}\:{P} \\ $$$${f}\:'\left({p}\right)=\mathrm{0}\:\Rightarrow\:\mathrm{curve}\:\mathrm{is}\:\mathrm{flat}\:\mathrm{in}\:{P} \\ $$$${f}\:'\left({p}\right)<\mathrm{0}\:\Rightarrow\:\mathrm{curve}\:\mathrm{is}\:\mathrm{decreasing}\:\mathrm{in}\:{P} \\ $$

Commented by mathocean1 last updated on 06/Jan/20

Thank you...

$$\mathrm{Thank}\:\mathrm{you}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com