Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 77474 by 21042004 last updated on 06/Jan/20

Prove  ∫_(−1) ^1 (√(1−x^2 )) dx=(π/2)

$${Prove} \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}=\frac{\pi}{\mathrm{2}} \\ $$

Commented by mathmax by abdo last updated on 06/Jan/20

let I =∫_(−1) ^1 (√(1−x^2 ))dx ⇒ I =2∫_0 ^1 (√(1−x^2 ))dx changement x=sinθ  give I =2∫_0 ^(π/2) cosθ cosθ dθ =∫_0 ^(π/2) (1+cos(2θ)dθ  =(π/2) +[(1/2)sin(2θ)]_0 ^(π/2) =(π/2)+0 =(π/2).

$${let}\:{I}\:=\int_{−\mathrm{1}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx}\:\Rightarrow\:{I}\:=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx}\:{changement}\:{x}={sin}\theta \\ $$$${give}\:{I}\:=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\theta\:{cos}\theta\:{d}\theta\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+{cos}\left(\mathrm{2}\theta\right){d}\theta\right. \\ $$$$=\frac{\pi}{\mathrm{2}}\:+\left[\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\frac{\pi}{\mathrm{2}}+\mathrm{0}\:=\frac{\pi}{\mathrm{2}}. \\ $$

Answered by MJS last updated on 06/Jan/20

(1) y=(√(1−x^2 )) is the upper half of the circle  with center  ((0),(0) ) and radius r=1 ⇒ the integral  is half of the circle area =(1/2)r^2 π=(π/2)  (2) ∫(√(1−x^2 ))dx=               [t=arcsin x → dx=(√(1−x^2 ))dt]          =∫cos^2  t dt=(1/2)(t+sin t cos t)=          =(1/2)(x(√(1−x^2 ))+arcsin x) +C          ⇒ the integral is (π/2)

$$\left(\mathrm{1}\right)\:{y}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\mathrm{is}\:\mathrm{the}\:\mathrm{upper}\:\mathrm{half}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle} \\ $$$$\mathrm{with}\:\mathrm{center}\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\mathrm{and}\:\mathrm{radius}\:{r}=\mathrm{1}\:\Rightarrow\:\mathrm{the}\:\mathrm{integral} \\ $$$$\mathrm{is}\:\mathrm{half}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{area}\:=\frac{\mathrm{1}}{\mathrm{2}}{r}^{\mathrm{2}} \pi=\frac{\pi}{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:\int\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{t}=\mathrm{arcsin}\:{x}\:\rightarrow\:{dx}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dt}\right] \\ $$$$\:\:\:\:\:\:\:\:=\int\mathrm{cos}^{\mathrm{2}} \:{t}\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\left({t}+\mathrm{sin}\:{t}\:\mathrm{cos}\:{t}\right)= \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left({x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }+\mathrm{arcsin}\:{x}\right)\:+{C} \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{the}\:\mathrm{integral}\:\mathrm{is}\:\frac{\pi}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com