Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 77988 by ajfour last updated on 12/Jan/20

Commented by ajfour last updated on 12/Jan/20

If the central rectangle has  has sides half of that of outer  one, then find AB.

$${If}\:{the}\:{central}\:{rectangle}\:{has} \\ $$$${has}\:{sides}\:{half}\:{of}\:{that}\:{of}\:{outer} \\ $$$${one},\:{then}\:{find}\:{AB}. \\ $$

Answered by mr W last updated on 12/Jan/20

C(0,c)  A(a,0)  B(b,0)  Eqn. of CA:  ((y−1)/(c−1))=((x−(d/2))/(0−(d/2)))  point A:  ((0−1)/(c−1))=((a−(d/2))/(0−(d/2)))  ⇒a=(d/2)(1+(1/(c−1)))    Eqn. of CB:  ((y−2)/(c−2))=((x−d)/(0−d))  point B:  ((0−2)/(c−2))=((b−d)/(0−d))  ⇒b=d(1+(2/(c−2)))  AB=b−a=(d/2)(1+(4/(c−2))−(1/(c−1)))  AC=(√(a^2 +c^2 ))  AC=AB  (√(a^2 +c^2 ))=b−a  c^2 =b(b−2a)  c^2 =d(1+(2/(c−2)))[d(1+(2/(c−2)))−2×(d/2)(1+(1/(c−1)))]  c^2 =d^2 (1+(2/(c−2)))((2/(c−2))−(1/(c−1)))  c^2 =(d^2 c^2 /((c−2)^2 (c−1)))  (c−2)^2 (c−1)−d^2 =0  let t=c−2  ⇒t^3 +t^2 −d^2 =0  let t=s−(1/3)  (s−(1/3))^3 +(s−(1/3))^2 −d^2 =0  s^3 −(s/3)+((2/(27))−d^2 )=0  s=(((√(((1/(27))−(d^2 /2))^2 −(1/(729))))−(1/(27))+(d^2 /2)))^(1/3) −(((√(((1/(27))−(d^2 /2))^2 −(1/(729))))+(1/(27))−(d^2 /2)))^(1/3)   t=c−2=(((√(((1/(27))−(d^2 /2))^2 −(1/(729))))−(1/(27))+(d^2 /2)))^(1/3) −(((√(((1/(27))−(d^2 /2))^2 −(1/(729))))+(1/(27))−(d^2 /2)))^(1/3) −(1/3)  ⇒c=(5/3)+(((√(((1/(27))−(d^2 /2))^2 −(1/(729))))−(1/(27))+(d^2 /2)))^(1/3) −(((√(((1/(27))−(d^2 /2))^2 −(1/(729))))+(1/(27))−(d^2 /2)))^(1/3) −(1/3)  AB=(d/2)(1+(4/(c−2))−(1/(c−1)))

$${C}\left(\mathrm{0},{c}\right) \\ $$$${A}\left({a},\mathrm{0}\right) \\ $$$${B}\left({b},\mathrm{0}\right) \\ $$$${Eqn}.\:{of}\:{CA}: \\ $$$$\frac{{y}−\mathrm{1}}{{c}−\mathrm{1}}=\frac{{x}−\frac{{d}}{\mathrm{2}}}{\mathrm{0}−\frac{{d}}{\mathrm{2}}} \\ $$$${point}\:{A}: \\ $$$$\frac{\mathrm{0}−\mathrm{1}}{{c}−\mathrm{1}}=\frac{{a}−\frac{{d}}{\mathrm{2}}}{\mathrm{0}−\frac{{d}}{\mathrm{2}}} \\ $$$$\Rightarrow{a}=\frac{{d}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{c}−\mathrm{1}}\right) \\ $$$$ \\ $$$${Eqn}.\:{of}\:{CB}: \\ $$$$\frac{{y}−\mathrm{2}}{{c}−\mathrm{2}}=\frac{{x}−{d}}{\mathrm{0}−{d}} \\ $$$${point}\:{B}: \\ $$$$\frac{\mathrm{0}−\mathrm{2}}{{c}−\mathrm{2}}=\frac{{b}−{d}}{\mathrm{0}−{d}} \\ $$$$\Rightarrow{b}={d}\left(\mathrm{1}+\frac{\mathrm{2}}{{c}−\mathrm{2}}\right) \\ $$$${AB}={b}−{a}=\frac{{d}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{4}}{{c}−\mathrm{2}}−\frac{\mathrm{1}}{{c}−\mathrm{1}}\right) \\ $$$${AC}=\sqrt{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$${AC}={AB} \\ $$$$\sqrt{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} }={b}−{a} \\ $$$${c}^{\mathrm{2}} ={b}\left({b}−\mathrm{2}{a}\right) \\ $$$${c}^{\mathrm{2}} ={d}\left(\mathrm{1}+\frac{\mathrm{2}}{{c}−\mathrm{2}}\right)\left[{d}\left(\mathrm{1}+\frac{\mathrm{2}}{{c}−\mathrm{2}}\right)−\mathrm{2}×\frac{{d}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{c}−\mathrm{1}}\right)\right] \\ $$$${c}^{\mathrm{2}} ={d}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{2}}{{c}−\mathrm{2}}\right)\left(\frac{\mathrm{2}}{{c}−\mathrm{2}}−\frac{\mathrm{1}}{{c}−\mathrm{1}}\right) \\ $$$${c}^{\mathrm{2}} =\frac{{d}^{\mathrm{2}} {c}^{\mathrm{2}} }{\left({c}−\mathrm{2}\right)^{\mathrm{2}} \left({c}−\mathrm{1}\right)} \\ $$$$\left({c}−\mathrm{2}\right)^{\mathrm{2}} \left({c}−\mathrm{1}\right)−{d}^{\mathrm{2}} =\mathrm{0} \\ $$$${let}\:{t}={c}−\mathrm{2} \\ $$$$\Rightarrow{t}^{\mathrm{3}} +{t}^{\mathrm{2}} −{d}^{\mathrm{2}} =\mathrm{0} \\ $$$${let}\:{t}={s}−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\left({s}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{3}} +\left({s}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} −{d}^{\mathrm{2}} =\mathrm{0} \\ $$$${s}^{\mathrm{3}} −\frac{{s}}{\mathrm{3}}+\left(\frac{\mathrm{2}}{\mathrm{27}}−{d}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${s}=\sqrt[{\mathrm{3}}]{\sqrt{\left(\frac{\mathrm{1}}{\mathrm{27}}−\frac{{d}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{729}}}−\frac{\mathrm{1}}{\mathrm{27}}+\frac{{d}^{\mathrm{2}} }{\mathrm{2}}}−\sqrt[{\mathrm{3}}]{\sqrt{\left(\frac{\mathrm{1}}{\mathrm{27}}−\frac{{d}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{729}}}+\frac{\mathrm{1}}{\mathrm{27}}−\frac{{d}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$${t}={c}−\mathrm{2}=\sqrt[{\mathrm{3}}]{\sqrt{\left(\frac{\mathrm{1}}{\mathrm{27}}−\frac{{d}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{729}}}−\frac{\mathrm{1}}{\mathrm{27}}+\frac{{d}^{\mathrm{2}} }{\mathrm{2}}}−\sqrt[{\mathrm{3}}]{\sqrt{\left(\frac{\mathrm{1}}{\mathrm{27}}−\frac{{d}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{729}}}+\frac{\mathrm{1}}{\mathrm{27}}−\frac{{d}^{\mathrm{2}} }{\mathrm{2}}}−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow{c}=\frac{\mathrm{5}}{\mathrm{3}}+\sqrt[{\mathrm{3}}]{\sqrt{\left(\frac{\mathrm{1}}{\mathrm{27}}−\frac{{d}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{729}}}−\frac{\mathrm{1}}{\mathrm{27}}+\frac{{d}^{\mathrm{2}} }{\mathrm{2}}}−\sqrt[{\mathrm{3}}]{\sqrt{\left(\frac{\mathrm{1}}{\mathrm{27}}−\frac{{d}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{729}}}+\frac{\mathrm{1}}{\mathrm{27}}−\frac{{d}^{\mathrm{2}} }{\mathrm{2}}}−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${AB}=\frac{{d}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{4}}{{c}−\mathrm{2}}−\frac{\mathrm{1}}{{c}−\mathrm{1}}\right) \\ $$

Commented by ajfour last updated on 13/Jan/20

Awesome solution sir, thanks!

$${Awesome}\:{solution}\:{sir},\:{thanks}! \\ $$

Commented by ajfour last updated on 13/Jan/20

its alright sir, i shall consult  you again..

$${its}\:{alright}\:{sir},\:{i}\:{shall}\:{consult} \\ $$$${you}\:{again}.. \\ $$

Commented by mr W last updated on 13/Jan/20

sir, please recheck:  (c−2)^2 (c−1)=d^2  is correct. with t=c−2  we get t^3 +t=d^2 . not t^3 −t=2d!

$${sir},\:{please}\:{recheck}: \\ $$$$\left({c}−\mathrm{2}\right)^{\mathrm{2}} \left({c}−\mathrm{1}\right)={d}^{\mathrm{2}} \:{is}\:{correct}.\:{with}\:{t}={c}−\mathrm{2} \\ $$$${we}\:{get}\:{t}^{\mathrm{3}} +{t}={d}^{\mathrm{2}} .\:{not}\:{t}^{\mathrm{3}} −{t}=\mathrm{2}{d}! \\ $$

Commented by MJS last updated on 13/Jan/20

to mrW: our friend′s new ID is Pratah

$$\mathrm{to}\:\mathrm{mrW}:\:\mathrm{our}\:\mathrm{friend}'\mathrm{s}\:\mathrm{new}\:\mathrm{ID}\:\mathrm{is}\:\mathrm{Pratah} \\ $$

Commented by mr W last updated on 13/Jan/20

yes. i knew this as soon the first  question with the new id was posted.

$${yes}.\:{i}\:{knew}\:{this}\:{as}\:{soon}\:{the}\:{first} \\ $$$${question}\:{with}\:{the}\:{new}\:{id}\:{was}\:{posted}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com