Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 78693 by TawaTawa last updated on 19/Jan/20

Commented by abdomathmax last updated on 20/Jan/20

let f(x)=(((^3 (√x))+(^3 (√a)))/(x+a))  changement x+a=t give  f(x)=g(t)=(((^3 (√(t−a))+(^3 (√a)))/t) we hsve  α^3  +β^3 =(α+β)(α^2 −αβ +β^2 )  let change α by^3 (√α)  and β by^3 (√(β )) we get α+β =(^3 (√α)+^3 (√β))( α^(2/3) −^3 (√(αβ))+β^(2/3) )⇒  (^3 (√α))+(^3 (√β)) =((α+β)/(α^(2/3)  −^3 (√(αβ)) +β^(2/3) )) ⇒  (^3 (√(t−a)))+(^3 (√a)) =((t−a+a)/((t−a)^(2/3) −^3 (√((t−a)a))+a^(2/3) )) ⇒  g(t)=(1/((t−a)^(2/3)  −^3 (√((t−a)a)) +a^(2/3) )) ⇒  lim_(t→0)   g(t) =(1/((−a)^(2/3)  +a^(2/3)  +a^(2/3) )) =(1/(3 a^(2/3) )) =(1/(3(^3 (√(a^2 )))))  =lim_(x→−a)  f(x)

$${let}\:{f}\left({x}\right)=\frac{\left(^{\mathrm{3}} \sqrt{{x}}\right)+\left(^{\mathrm{3}} \sqrt{{a}}\right)}{{x}+{a}}\:\:{changement}\:{x}+{a}={t}\:{give} \\ $$$${f}\left({x}\right)={g}\left({t}\right)=\frac{\left(^{\mathrm{3}} \sqrt{{t}−{a}}+\left(^{\mathrm{3}} \sqrt{{a}}\right)\right.}{{t}}\:{we}\:{hsve} \\ $$$$\alpha^{\mathrm{3}} \:+\beta^{\mathrm{3}} =\left(\alpha+\beta\right)\left(\alpha^{\mathrm{2}} −\alpha\beta\:+\beta^{\mathrm{2}} \right)\:\:{let}\:{change}\:\alpha\:{by}\:^{\mathrm{3}} \sqrt{\alpha} \\ $$$${and}\:\beta\:{by}\:^{\mathrm{3}} \sqrt{\beta\:}\:{we}\:{get}\:\alpha+\beta\:=\left(^{\mathrm{3}} \sqrt{\alpha}+^{\mathrm{3}} \sqrt{\beta}\right)\left(\:\alpha^{\frac{\mathrm{2}}{\mathrm{3}}} −^{\mathrm{3}} \sqrt{\alpha\beta}+\beta^{\frac{\mathrm{2}}{\mathrm{3}}} \right)\Rightarrow \\ $$$$\left(^{\mathrm{3}} \sqrt{\alpha}\right)+\left(^{\mathrm{3}} \sqrt{\beta}\right)\:=\frac{\alpha+\beta}{\alpha^{\frac{\mathrm{2}}{\mathrm{3}}} \:−^{\mathrm{3}} \sqrt{\alpha\beta}\:+\beta^{\frac{\mathrm{2}}{\mathrm{3}}} }\:\Rightarrow \\ $$$$\left(^{\mathrm{3}} \sqrt{{t}−{a}}\right)+\left(^{\mathrm{3}} \sqrt{{a}}\right)\:=\frac{{t}−{a}+{a}}{\left({t}−{a}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} −^{\mathrm{3}} \sqrt{\left({t}−{a}\right){a}}+{a}^{\frac{\mathrm{2}}{\mathrm{3}}} }\:\Rightarrow \\ $$$${g}\left({t}\right)=\frac{\mathrm{1}}{\left({t}−{a}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:−^{\mathrm{3}} \sqrt{\left({t}−{a}\right){a}}\:+{a}^{\frac{\mathrm{2}}{\mathrm{3}}} }\:\Rightarrow \\ $$$${lim}_{{t}\rightarrow\mathrm{0}} \:\:{g}\left({t}\right)\:=\frac{\mathrm{1}}{\left(−{a}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:+{a}^{\frac{\mathrm{2}}{\mathrm{3}}} \:+{a}^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=\frac{\mathrm{1}}{\mathrm{3}\:{a}^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=\frac{\mathrm{1}}{\mathrm{3}\left(^{\mathrm{3}} \sqrt{\left.{a}^{\mathrm{2}} \right)}\right.} \\ $$$$={lim}_{{x}\rightarrow−{a}} \:{f}\left({x}\right) \\ $$

Commented by TawaTawa last updated on 20/Jan/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mathmax by abdo last updated on 20/Jan/20

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Answered by john santu last updated on 20/Jan/20

we know that   x+a = ((x)^(1/(3 ))  + (a)^(1/(3 ))  )((x^2 )^(1/(3 ))  −((ax))^(1/(3 ))  +(a)^(1/(3 ))  )   lim_(x→−a)  ((1/(((x^2  ))^(1/(3 )) −((ax))^(1/(3 ))  +(a^2 )^(1/(3 )) )) )=   (1/((a^2 )^(1/(3 )) −(((−a)^2 ))^(1/(3 ))  +(a^2 )^(1/(3 )) )) = (1/(3 (a^2 )^(1/(3 )) )) .

$${we}\:{know}\:{that}\: \\ $$$${x}+{a}\:=\:\left(\sqrt[{\mathrm{3}\:}]{{x}}\:+\:\sqrt[{\mathrm{3}\:}]{{a}}\:\right)\left(\sqrt[{\mathrm{3}\:}]{{x}^{\mathrm{2}} }\:−\sqrt[{\mathrm{3}\:}]{{ax}}\:+\sqrt[{\mathrm{3}\:}]{{a}}\:\right)\: \\ $$$$\underset{{x}\rightarrow−{a}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\sqrt[{\mathrm{3}\:}]{{x}^{\mathrm{2}} \:}−\sqrt[{\mathrm{3}\:}]{{ax}}\:+\sqrt[{\mathrm{3}\:}]{{a}^{\mathrm{2}} }}\:\right)=\: \\ $$$$\frac{\mathrm{1}}{\sqrt[{\mathrm{3}\:}]{{a}^{\mathrm{2}} }−\sqrt[{\mathrm{3}\:}]{\left(−{a}\right)^{\mathrm{2}} }\:+\sqrt[{\mathrm{3}\:}]{{a}^{\mathrm{2}} }}\:=\:\frac{\mathrm{1}}{\mathrm{3}\:\sqrt[{\mathrm{3}\:}]{{a}^{\mathrm{2}} }}\:. \\ $$

Commented by TawaTawa last updated on 20/Jan/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com