Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 78800 by Tony Lin last updated on 20/Jan/20

Simplify:   _3 (√(3+((10)/3)(√(1/3))i))+ _3 (√(3−((10)/3)(√(1/3))i))

$${Simplify}: \\ $$$$\underset{\mathrm{3}} {\:}\sqrt{\mathrm{3}+\frac{\mathrm{10}}{\mathrm{3}}\sqrt{\frac{\mathrm{1}}{\mathrm{3}}}{i}}+\underset{\mathrm{3}} {\:}\sqrt{\mathrm{3}−\frac{\mathrm{10}}{\mathrm{3}}\sqrt{\frac{\mathrm{1}}{\mathrm{3}}}{i}} \\ $$

Commented by mathmax by abdo last updated on 20/Jan/20

A =(3+((10)/(3(√3)))i)^(1/3)  +(3−((10)/(3(√3)))i)^(1/3)   we have ∣3+((10)/(3(√3)))i∣ =(√(3^2  +((10^2 )/(27)) ))=(√((37×9 +100)/(27)))=(√(((433)/(37))=r_0 ))  ⇒3+((10)/(3(√3)))i =r_0  e^(iarctan(((10)/(9(√3)))))  ⇒(3+((10)/(3(√3)))i)^(1/3) =(r_0 )^(1/3)  e^((i/3)arctan(((10)/(9(√3)))))   also (3−((10)/(3(√3)))i)^(1/3)  =(r_0 )^(1/3)  e^(−(i/3)arctan(((10)/(9(√3)))))  ⇒  A =(r_0 )^(1/3)  (2cos((1/3)arctan(((10)/(9(√3)))))=2(r_0 )^(1/3)  cos((1/3)arctan(((10)/(9(√3)))))

$${A}\:=\left(\mathrm{3}+\frac{\mathrm{10}}{\mathrm{3}\sqrt{\mathrm{3}}}{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:+\left(\mathrm{3}−\frac{\mathrm{10}}{\mathrm{3}\sqrt{\mathrm{3}}}{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${we}\:{have}\:\mid\mathrm{3}+\frac{\mathrm{10}}{\mathrm{3}\sqrt{\mathrm{3}}}{i}\mid\:=\sqrt{\mathrm{3}^{\mathrm{2}} \:+\frac{\mathrm{10}^{\mathrm{2}} }{\mathrm{27}}\:}=\sqrt{\frac{\mathrm{37}×\mathrm{9}\:+\mathrm{100}}{\mathrm{27}}}=\sqrt{\frac{\mathrm{433}}{\mathrm{37}}={r}_{\mathrm{0}} } \\ $$$$\Rightarrow\mathrm{3}+\frac{\mathrm{10}}{\mathrm{3}\sqrt{\mathrm{3}}}{i}\:={r}_{\mathrm{0}} \:{e}^{{iarctan}\left(\frac{\mathrm{10}}{\mathrm{9}\sqrt{\mathrm{3}}}\right)} \:\Rightarrow\left(\mathrm{3}+\frac{\mathrm{10}}{\mathrm{3}\sqrt{\mathrm{3}}}{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} =\left({r}_{\mathrm{0}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:{e}^{\frac{{i}}{\mathrm{3}}{arctan}\left(\frac{\mathrm{10}}{\mathrm{9}\sqrt{\mathrm{3}}}\right)} \\ $$$${also}\:\left(\mathrm{3}−\frac{\mathrm{10}}{\mathrm{3}\sqrt{\mathrm{3}}}{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:=\left({r}_{\mathrm{0}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:{e}^{−\frac{{i}}{\mathrm{3}}{arctan}\left(\frac{\mathrm{10}}{\mathrm{9}\sqrt{\mathrm{3}}}\right)} \:\Rightarrow \\ $$$${A}\:=\left({r}_{\mathrm{0}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:\left(\mathrm{2}{cos}\left(\frac{\mathrm{1}}{\mathrm{3}}{arctan}\left(\frac{\mathrm{10}}{\mathrm{9}\sqrt{\mathrm{3}}}\right)\right)=\mathrm{2}\left({r}_{\mathrm{0}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:{cos}\left(\frac{\mathrm{1}}{\mathrm{3}}{arctan}\left(\frac{\mathrm{10}}{\mathrm{9}\sqrt{\mathrm{3}}}\right)\right)\right. \\ $$

Commented by Tony Lin last updated on 21/Jan/20

thanks sir, but r_0 =(√((27×9+100)/(27)))=(√((343)/(27)))

$${thanks}\:{sir},\:{but}\:{r}_{\mathrm{0}} =\sqrt{\frac{\mathrm{27}×\mathrm{9}+\mathrm{100}}{\mathrm{27}}}=\sqrt{\frac{\mathrm{343}}{\mathrm{27}}} \\ $$

Commented by mathmax by abdo last updated on 21/Jan/20

yes

$${yes} \\ $$

Answered by MJS last updated on 20/Jan/20

x=a^(1/3) +b^(1/3)      ∣^3   x^3 =a+3a^(1/3) b^(1/3) (a^(1/3) +b^(1/3) )+b  x^3 =a+3a^(1/3) b^(1/3) x+b  x^3 −3a^(1/3) b^(1/3) x−(a+b)=0  a=u+v∧b=u−v  x^3 −3(u^2 −v^2 )^(1/3) x−2u=0  u=3∧v=((10)/3)(√(1/3))i  x^3 −7x−6=0  ⇒  x_1 =−2  x_2 =−1  x_3 =3  the angles of 3±((10)/3)(√(1/3))i are  ±arctan ((10(√3))/(27)) ≈±.570377; their absolute  value is smaller than (π/2) ⇒ the solution must  be >0 ⇒ solution is  ((3+((10)/3)(√(1/3))i))^(1/3) +((3−((10)/3)(√(1/3))i))^(1/3) =3

$${x}={a}^{\frac{\mathrm{1}}{\mathrm{3}}} +{b}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\:\:\:\:\mid^{\mathrm{3}} \\ $$$${x}^{\mathrm{3}} ={a}+\mathrm{3}{a}^{\frac{\mathrm{1}}{\mathrm{3}}} {b}^{\frac{\mathrm{1}}{\mathrm{3}}} \left({a}^{\frac{\mathrm{1}}{\mathrm{3}}} +{b}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)+{b} \\ $$$${x}^{\mathrm{3}} ={a}+\mathrm{3}{a}^{\frac{\mathrm{1}}{\mathrm{3}}} {b}^{\frac{\mathrm{1}}{\mathrm{3}}} {x}+{b} \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{a}^{\frac{\mathrm{1}}{\mathrm{3}}} {b}^{\frac{\mathrm{1}}{\mathrm{3}}} {x}−\left({a}+{b}\right)=\mathrm{0} \\ $$$${a}={u}+{v}\wedge{b}={u}−{v} \\ $$$${x}^{\mathrm{3}} −\mathrm{3}\left({u}^{\mathrm{2}} −{v}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} {x}−\mathrm{2}{u}=\mathrm{0} \\ $$$${u}=\mathrm{3}\wedge{v}=\frac{\mathrm{10}}{\mathrm{3}}\sqrt{\frac{\mathrm{1}}{\mathrm{3}}}\mathrm{i} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}−\mathrm{6}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${x}_{\mathrm{1}} =−\mathrm{2} \\ $$$${x}_{\mathrm{2}} =−\mathrm{1} \\ $$$${x}_{\mathrm{3}} =\mathrm{3} \\ $$$$\mathrm{the}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{3}\pm\frac{\mathrm{10}}{\mathrm{3}}\sqrt{\frac{\mathrm{1}}{\mathrm{3}}}\mathrm{i}\:\mathrm{are} \\ $$$$\pm\mathrm{arctan}\:\frac{\mathrm{10}\sqrt{\mathrm{3}}}{\mathrm{27}}\:\approx\pm.\mathrm{570377};\:\mathrm{their}\:\mathrm{absolute} \\ $$$$\mathrm{value}\:\mathrm{is}\:\mathrm{smaller}\:\mathrm{than}\:\frac{\pi}{\mathrm{2}}\:\Rightarrow\:\mathrm{the}\:\mathrm{solution}\:\mathrm{must} \\ $$$$\mathrm{be}\:>\mathrm{0}\:\Rightarrow\:\mathrm{solution}\:\mathrm{is} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{3}+\frac{\mathrm{10}}{\mathrm{3}}\sqrt{\frac{\mathrm{1}}{\mathrm{3}}}\mathrm{i}}+\sqrt[{\mathrm{3}}]{\mathrm{3}−\frac{\mathrm{10}}{\mathrm{3}}\sqrt{\frac{\mathrm{1}}{\mathrm{3}}}\mathrm{i}}=\mathrm{3} \\ $$

Commented by Tony Lin last updated on 21/Jan/20

thanks sir, but if we originally use   Cardano′s method to solve   x^3 +px+q=0  how can we simplify the answer to  become more beautiful without using  factorization  or what we can do is only cube it  and solve it in a complicated and  slow way

$${thanks}\:{sir},\:{but}\:{if}\:{we}\:{originally}\:{use}\: \\ $$$${Cardano}'{s}\:{method}\:{to}\:{solve}\: \\ $$$${x}^{\mathrm{3}} +{px}+{q}=\mathrm{0} \\ $$$${how}\:{can}\:{we}\:{simplify}\:{the}\:{answer}\:{to} \\ $$$${become}\:{more}\:{beautiful}\:{without}\:{using} \\ $$$${factorization} \\ $$$${or}\:{what}\:{we}\:{can}\:{do}\:{is}\:{only}\:{cube}\:{it} \\ $$$${and}\:{solve}\:{it}\:{in}\:{a}\:{complicated}\:{and} \\ $$$${slow}\:{way} \\ $$

Commented by MJS last updated on 21/Jan/20

Cardano doesn′t work when the equation has  3 real roots.  x^3 +px+q=0  first, always check all factors of ±q  (x−α)(x−β)(x−γ)=x^3 +...−αβγ  ⇒ q=−αβγ  if we have solutions ∈Z or ∈Q we can simply  find them  second, calculate D=(p^3 /(27))+(q^2 /4)  D≥0 ⇒ Cardano  D<0 ⇒ trigonometric solution  x_(k+1) =(2/3)(√(−3p))sin ((1/3)(2kπ+arcsin ((9q)/(2(√(−3p^3 ))))))  with k=0, 1, 2  the problem with both methods is that the  solutions “hide” easier ones like x=(√3)+(√2)  but there′s no other way

$$\mathrm{Cardano}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{work}\:\mathrm{when}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{has} \\ $$$$\mathrm{3}\:\mathrm{real}\:\mathrm{roots}. \\ $$$${x}^{\mathrm{3}} +{px}+{q}=\mathrm{0} \\ $$$$\mathrm{first},\:\mathrm{always}\:\mathrm{check}\:\mathrm{all}\:\mathrm{factors}\:\mathrm{of}\:\pm{q} \\ $$$$\left({x}−\alpha\right)\left({x}−\beta\right)\left({x}−\gamma\right)={x}^{\mathrm{3}} +...−\alpha\beta\gamma \\ $$$$\Rightarrow\:{q}=−\alpha\beta\gamma \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{have}\:\mathrm{solutions}\:\in\mathbb{Z}\:\mathrm{or}\:\in\mathbb{Q}\:\mathrm{we}\:\mathrm{can}\:\mathrm{simply} \\ $$$$\mathrm{find}\:\mathrm{them} \\ $$$$\mathrm{second},\:\mathrm{calculate}\:{D}=\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${D}\geqslant\mathrm{0}\:\Rightarrow\:\mathrm{Cardano} \\ $$$${D}<\mathrm{0}\:\Rightarrow\:\mathrm{trigonometric}\:\mathrm{solution} \\ $$$${x}_{{k}+\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{3}}\sqrt{−\mathrm{3}{p}}\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{2}{k}\pi+\mathrm{arcsin}\:\frac{\mathrm{9}{q}}{\mathrm{2}\sqrt{−\mathrm{3}{p}^{\mathrm{3}} }}\right)\right) \\ $$$$\mathrm{with}\:{k}=\mathrm{0},\:\mathrm{1},\:\mathrm{2} \\ $$$$\mathrm{the}\:\mathrm{problem}\:\mathrm{with}\:\mathrm{both}\:\mathrm{methods}\:\mathrm{is}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{solutions}\:``\mathrm{hide}''\:\mathrm{easier}\:\mathrm{ones}\:\mathrm{like}\:{x}=\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}} \\ $$$$\mathrm{but}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{other}\:\mathrm{way} \\ $$

Commented by MJS last updated on 21/Jan/20

x^3 −7x−6=0  in this case, first try factors of ±6:  {−6, −3, −2, −1, 1, 2, 3, 6}  and you′re done  Cardano doesn′t work because  D=(((−7)^3 )/(27))+(((−6)^2 )/4)=−((100)/(27))<0  trigonometric solution gives  x_1 =−((√(21))/3)sin ((1/3)arcsin ((9(√(21)))/(49)))  x_2 =((2(√(21)))/3)sin ((π/3)+arcsin ((9(√(21)))/(49)))  x_3 =−((2(√(21)))/3)cos ((π/6)+arcsin ((9(√(21)))/(49)))  and it′s not easy to show  x_1 =−1  x_2 =3  x_3 =−2

$${x}^{\mathrm{3}} −\mathrm{7}{x}−\mathrm{6}=\mathrm{0} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case},\:\mathrm{first}\:\mathrm{try}\:\mathrm{factors}\:\mathrm{of}\:\pm\mathrm{6}: \\ $$$$\left\{−\mathrm{6},\:−\mathrm{3},\:−\mathrm{2},\:−\mathrm{1},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{6}\right\} \\ $$$$\mathrm{and}\:\mathrm{you}'\mathrm{re}\:\mathrm{done} \\ $$$$\mathrm{Cardano}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{work}\:\mathrm{because} \\ $$$${D}=\frac{\left(−\mathrm{7}\right)^{\mathrm{3}} }{\mathrm{27}}+\frac{\left(−\mathrm{6}\right)^{\mathrm{2}} }{\mathrm{4}}=−\frac{\mathrm{100}}{\mathrm{27}}<\mathrm{0} \\ $$$$\mathrm{trigonometric}\:\mathrm{solution}\:\mathrm{gives} \\ $$$${x}_{\mathrm{1}} =−\frac{\sqrt{\mathrm{21}}}{\mathrm{3}}\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\mathrm{9}\sqrt{\mathrm{21}}}{\mathrm{49}}\right) \\ $$$${x}_{\mathrm{2}} =\frac{\mathrm{2}\sqrt{\mathrm{21}}}{\mathrm{3}}\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\mathrm{arcsin}\:\frac{\mathrm{9}\sqrt{\mathrm{21}}}{\mathrm{49}}\right) \\ $$$${x}_{\mathrm{3}} =−\frac{\mathrm{2}\sqrt{\mathrm{21}}}{\mathrm{3}}\mathrm{cos}\:\left(\frac{\pi}{\mathrm{6}}+\mathrm{arcsin}\:\frac{\mathrm{9}\sqrt{\mathrm{21}}}{\mathrm{49}}\right) \\ $$$$\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{show} \\ $$$${x}_{\mathrm{1}} =−\mathrm{1} \\ $$$${x}_{\mathrm{2}} =\mathrm{3} \\ $$$${x}_{\mathrm{3}} =−\mathrm{2} \\ $$

Commented by jagoll last updated on 21/Jan/20

waw..i understand sir. thanks sir

$$\mathrm{waw}..\mathrm{i}\:\mathrm{understand}\:\mathrm{sir}.\:\mathrm{thanks}\:\mathrm{sir} \\ $$

Commented by Tony Lin last updated on 21/Jan/20

thanks sir,and I found that  if I use the result from mathmax  ((3+((10)/3)(√(1/3))i))^(1/3) +((3−((10)/3)(√(1/3))i))^(1/3)   =2(√(7/3))cos[(1/3)arctan(((10)/(9(√3))))]  let arctan(((10)/(9(√3))))=θ⇒tanθ=((10)/(9(√3)))  ∴cosθ=((9(√3))/(7(√7)))=4cos^3 (θ/3)−3cos(θ/3)  let cos(θ/3)=t⇒4t^3 −3t=((9(√3))/(7(√7)))  ⇒28(√7)t^3 −21(√7)t−9(√3)=0  ⇒(2(√7)t−3(√3))(14t^2 +3(√(21))t+3)=0  ∴t=(3/2)(√(3/7))  ∴2(√(7/3))cos[(1/3)arctan(((10)/(9(√3))))]  =((3+((10)/3)(√(1/3))i))^(1/3) +((3−((10)/3)(√(1/3))i))^(1/3)   =3

$${thanks}\:{sir},{and}\:{I}\:{found}\:{that} \\ $$$${if}\:{I}\:{use}\:{the}\:{result}\:{from}\:{mathmax} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{3}+\frac{\mathrm{10}}{\mathrm{3}}\sqrt{\frac{\mathrm{1}}{\mathrm{3}}}{i}}+\sqrt[{\mathrm{3}}]{\mathrm{3}−\frac{\mathrm{10}}{\mathrm{3}}\sqrt{\frac{\mathrm{1}}{\mathrm{3}}}{i}} \\ $$$$=\mathrm{2}\sqrt{\frac{\mathrm{7}}{\mathrm{3}}}{cos}\left[\frac{\mathrm{1}}{\mathrm{3}}{arctan}\left(\frac{\mathrm{10}}{\mathrm{9}\sqrt{\mathrm{3}}}\right)\right] \\ $$$${let}\:{arctan}\left(\frac{\mathrm{10}}{\mathrm{9}\sqrt{\mathrm{3}}}\right)=\theta\Rightarrow{tan}\theta=\frac{\mathrm{10}}{\mathrm{9}\sqrt{\mathrm{3}}} \\ $$$$\therefore{cos}\theta=\frac{\mathrm{9}\sqrt{\mathrm{3}}}{\mathrm{7}\sqrt{\mathrm{7}}}=\mathrm{4}{cos}^{\mathrm{3}} \frac{\theta}{\mathrm{3}}−\mathrm{3}{cos}\frac{\theta}{\mathrm{3}} \\ $$$${let}\:{cos}\frac{\theta}{\mathrm{3}}={t}\Rightarrow\mathrm{4}{t}^{\mathrm{3}} −\mathrm{3}{t}=\frac{\mathrm{9}\sqrt{\mathrm{3}}}{\mathrm{7}\sqrt{\mathrm{7}}} \\ $$$$\Rightarrow\mathrm{28}\sqrt{\mathrm{7}}{t}^{\mathrm{3}} −\mathrm{21}\sqrt{\mathrm{7}}{t}−\mathrm{9}\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{2}\sqrt{\mathrm{7}}{t}−\mathrm{3}\sqrt{\mathrm{3}}\right)\left(\mathrm{14}{t}^{\mathrm{2}} +\mathrm{3}\sqrt{\mathrm{21}}{t}+\mathrm{3}\right)=\mathrm{0} \\ $$$$\therefore{t}=\frac{\mathrm{3}}{\mathrm{2}}\sqrt{\frac{\mathrm{3}}{\mathrm{7}}} \\ $$$$\therefore\mathrm{2}\sqrt{\frac{\mathrm{7}}{\mathrm{3}}}{cos}\left[\frac{\mathrm{1}}{\mathrm{3}}{arctan}\left(\frac{\mathrm{10}}{\mathrm{9}\sqrt{\mathrm{3}}}\right)\right] \\ $$$$=\sqrt[{\mathrm{3}}]{\mathrm{3}+\frac{\mathrm{10}}{\mathrm{3}}\sqrt{\frac{\mathrm{1}}{\mathrm{3}}}{i}}+\sqrt[{\mathrm{3}}]{\mathrm{3}−\frac{\mathrm{10}}{\mathrm{3}}\sqrt{\frac{\mathrm{1}}{\mathrm{3}}}{i}} \\ $$$$=\mathrm{3} \\ $$

Commented by msup trace by abdo last updated on 21/Jan/20

thank you for completing the answer

$${thank}\:{you}\:{for}\:{completing}\:{the}\:{answer} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com