Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 79147 by jagoll last updated on 23/Jan/20

(√(x+(1/x^2 )))+(√(x−(1/x^2 ) ))≤(2/x)

$$\sqrt{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}+\sqrt{\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:}\leqslant\frac{\mathrm{2}}{\mathrm{x}} \\ $$

Answered by john santu last updated on 23/Jan/20

(√((x^3 +1)/x^2 ))+(√((x^3 −1)/x^2 ))≤(2/x)  (i)x≥−1 ∧x≥1∧x≠0  (ii) (((√(x^3 +1))+(√(x^3 −1)))/x)≤(2/x)   ⇒(√(x^3 +1))+(√(x^3 −1))≤2  let x^3 =t⇒(√(t+1))+(√(t−1)) ≤2  2t+2(√(t^2 −1))≤4  (√(t^2 −1)) ≤2−t⇒t^2 −1≤4−4t+t^2   4t≤5 ⇒t≤(5/4) ⇒x^3 ≤(5/4)  x≤((5/4))^(1/(3 )) . now we get solution  x≥1 ∧x≤((5/4))^(1/(3 ))  ⇒ x∈[1,((5/4))^(1/(3 )) ]

$$\sqrt{\frac{{x}^{\mathrm{3}} +\mathrm{1}}{{x}^{\mathrm{2}} }}+\sqrt{\frac{{x}^{\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{2}} }}\leqslant\frac{\mathrm{2}}{{x}} \\ $$$$\left({i}\right){x}\geqslant−\mathrm{1}\:\wedge{x}\geqslant\mathrm{1}\wedge{x}\neq\mathrm{0} \\ $$$$\left({ii}\right)\:\frac{\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{3}} −\mathrm{1}}}{{x}}\leqslant\frac{\mathrm{2}}{{x}}\: \\ $$$$\Rightarrow\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{3}} −\mathrm{1}}\leqslant\mathrm{2} \\ $$$${let}\:{x}^{\mathrm{3}} ={t}\Rightarrow\sqrt{{t}+\mathrm{1}}+\sqrt{{t}−\mathrm{1}}\:\leqslant\mathrm{2} \\ $$$$\mathrm{2}{t}+\mathrm{2}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\leqslant\mathrm{4} \\ $$$$\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\:\leqslant\mathrm{2}−{t}\Rightarrow{t}^{\mathrm{2}} −\mathrm{1}\leqslant\mathrm{4}−\mathrm{4}{t}+{t}^{\mathrm{2}} \\ $$$$\mathrm{4}{t}\leqslant\mathrm{5}\:\Rightarrow{t}\leqslant\frac{\mathrm{5}}{\mathrm{4}}\:\Rightarrow{x}^{\mathrm{3}} \leqslant\frac{\mathrm{5}}{\mathrm{4}} \\ $$$${x}\leqslant\sqrt[{\mathrm{3}\:}]{\frac{\mathrm{5}}{\mathrm{4}}}.\:{now}\:{we}\:{get}\:{solution} \\ $$$${x}\geqslant\mathrm{1}\:\wedge{x}\leqslant\sqrt[{\mathrm{3}\:}]{\frac{\mathrm{5}}{\mathrm{4}}}\:\Rightarrow\:{x}\in\left[\mathrm{1},\sqrt[{\mathrm{3}\:}]{\frac{\mathrm{5}}{\mathrm{4}}}\right] \\ $$$$ \\ $$

Commented by jagoll last updated on 23/Jan/20

thank you sir. your solution is  fantastic

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{your}\:\mathrm{solution}\:\mathrm{is} \\ $$$$\mathrm{fantastic} \\ $$

Commented by jagoll last updated on 23/Jan/20

good sir

$$\mathrm{good}\:\mathrm{sir} \\ $$

Commented by MJS last updated on 23/Jan/20

nice and right, but (just saying):  (i) x≥−1∧x≥1∧x≠0 ⇒ x≥1  squaring without substituting t isn′t any harder:  0≤(√(x^3 +1))+(√(x^3 −1))≤2     ∣^2   0≤2x^3 +2(√(x^3 +1))(√(x^3 −1))≤4  −x^3 ≤(√(x^3 +1))(√(x^3 −1))≤2−x^3   but we know that 0≤(√(x^3 +1))(√(x^3 −1))  ⇒ 0≤4−x^3  ⇒ x≤(2)^(1/3)   0≤(√(x^3 +1))(√(x^3 −1))≤2−x^3      ∣^2   0≤x^6 −1≤x^6 −4x^3 +4  0≤x^3 ≤(5/4)  0≤x≤((5/4))^(1/3)   but x≥1  ⇒  1≤x≤((5/4))^(1/3)

$$\mathrm{nice}\:\mathrm{and}\:\mathrm{right},\:\mathrm{but}\:\left(\mathrm{just}\:\mathrm{saying}\right): \\ $$$$\left({i}\right)\:{x}\geqslant−\mathrm{1}\wedge{x}\geqslant\mathrm{1}\wedge{x}\neq\mathrm{0}\:\Rightarrow\:{x}\geqslant\mathrm{1} \\ $$$$\mathrm{squaring}\:\mathrm{without}\:\mathrm{substituting}\:{t}\:\mathrm{isn}'\mathrm{t}\:\mathrm{any}\:\mathrm{harder}: \\ $$$$\mathrm{0}\leqslant\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{3}} −\mathrm{1}}\leqslant\mathrm{2}\:\:\:\:\:\mid^{\mathrm{2}} \\ $$$$\mathrm{0}\leqslant\mathrm{2}{x}^{\mathrm{3}} +\mathrm{2}\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\sqrt{{x}^{\mathrm{3}} −\mathrm{1}}\leqslant\mathrm{4} \\ $$$$−{x}^{\mathrm{3}} \leqslant\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\sqrt{{x}^{\mathrm{3}} −\mathrm{1}}\leqslant\mathrm{2}−{x}^{\mathrm{3}} \\ $$$$\mathrm{but}\:\mathrm{we}\:\mathrm{know}\:\mathrm{that}\:\mathrm{0}\leqslant\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\sqrt{{x}^{\mathrm{3}} −\mathrm{1}} \\ $$$$\Rightarrow\:\mathrm{0}\leqslant\mathrm{4}−{x}^{\mathrm{3}} \:\Rightarrow\:{x}\leqslant\sqrt[{\mathrm{3}}]{\mathrm{2}} \\ $$$$\mathrm{0}\leqslant\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\sqrt{{x}^{\mathrm{3}} −\mathrm{1}}\leqslant\mathrm{2}−{x}^{\mathrm{3}} \:\:\:\:\:\mid^{\mathrm{2}} \\ $$$$\mathrm{0}\leqslant{x}^{\mathrm{6}} −\mathrm{1}\leqslant{x}^{\mathrm{6}} −\mathrm{4}{x}^{\mathrm{3}} +\mathrm{4} \\ $$$$\mathrm{0}\leqslant{x}^{\mathrm{3}} \leqslant\frac{\mathrm{5}}{\mathrm{4}} \\ $$$$\mathrm{0}\leqslant{x}\leqslant\sqrt[{\mathrm{3}}]{\frac{\mathrm{5}}{\mathrm{4}}} \\ $$$$\mathrm{but}\:{x}\geqslant\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\mathrm{1}\leqslant{x}\leqslant\sqrt[{\mathrm{3}}]{\frac{\mathrm{5}}{\mathrm{4}}} \\ $$

Commented by john santu last updated on 23/Jan/20

yes depending on the direction  of our view sir

$${yes}\:{depending}\:{on}\:{the}\:{direction} \\ $$$${of}\:{our}\:{view}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com