Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 79443 by jagoll last updated on 25/Jan/20

lim_(x→0)  [(sin x)^(1/x) +((1/x))^(sin x) ] =

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\left(\mathrm{sin}\:\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} +\left(\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{sin}\:\mathrm{x}} \right]\:= \\ $$

Commented by mathmax by abdo last updated on 25/Jan/20

let f(x)=(sinx)^(1/x)  +((1/x))^(sinx)   changement x=(1/t) give  f(x)=g(t) =(sin((1/t)))^t  + t^(sin((1/t)))   x→0^+  ⇒t →+∞  we have   (sin((1/t)))^t  =e^(tln((1/t)))  =e^(−tlnt)  →0 (t→+∞)  t^(sin((1/t)))  =e^(sin((1/t))ln(t))  ∼ e^((ln(t))/t) →e^0  =1 ⇒lim_(t→+∞) g(t)=1 =lim_(x→0) f(x)

$${let}\:{f}\left({x}\right)=\left({sinx}\right)^{\frac{\mathrm{1}}{{x}}} \:+\left(\frac{\mathrm{1}}{{x}}\right)^{{sinx}} \:\:{changement}\:{x}=\frac{\mathrm{1}}{{t}}\:{give} \\ $$$${f}\left({x}\right)={g}\left({t}\right)\:=\left({sin}\left(\frac{\mathrm{1}}{{t}}\right)\right)^{{t}} \:+\:{t}^{{sin}\left(\frac{\mathrm{1}}{{t}}\right)} \\ $$$${x}\rightarrow\mathrm{0}^{+} \:\Rightarrow{t}\:\rightarrow+\infty\:\:{we}\:{have}\: \\ $$$$\left({sin}\left(\frac{\mathrm{1}}{{t}}\right)\right)^{{t}} \:={e}^{{tln}\left(\frac{\mathrm{1}}{{t}}\right)} \:={e}^{−{tlnt}} \:\rightarrow\mathrm{0}\:\left({t}\rightarrow+\infty\right) \\ $$$${t}^{{sin}\left(\frac{\mathrm{1}}{{t}}\right)} \:={e}^{{sin}\left(\frac{\mathrm{1}}{{t}}\right){ln}\left({t}\right)} \:\sim\:{e}^{\frac{{ln}\left({t}\right)}{{t}}} \rightarrow{e}^{\mathrm{0}} \:=\mathrm{1}\:\Rightarrow{lim}_{{t}\rightarrow+\infty} {g}\left({t}\right)=\mathrm{1}\:={lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right) \\ $$

Answered by john santu last updated on 25/Jan/20

let :(sin x)^(1/x) +((1/x))^(sin x) = f(x)+g(x)  lim_(x→0)  f(x) =lim_(x→0) (sin x)^(1/x) =  lim_(x→0)  {(1+(sin x−1))^(1/(sin x−1)) }^((sin x−1)/x)   = e^(lim_(x→0) [((sin x−1)/x)]) =e^(−∞) =0  lim_(x→0) g(x)=lim_(x→0) ((1/x))^(sin x)   =lim_(x→0) (1+(((1−x)/x)))^(sin x)   =e^(lim_(x→0)  (sin x)) = e^0  = 1  therefore lim_(x→0)  [(sin x)^(1/x) +((1/x))^(sin x) ] = 1

$${let}\::\left(\mathrm{sin}\:{x}\right)^{\frac{\mathrm{1}}{{x}}} +\left(\frac{\mathrm{1}}{{x}}\right)^{\mathrm{sin}\:{x}} =\:{f}\left({x}\right)+{g}\left({x}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{sin}\:{x}\right)^{\frac{\mathrm{1}}{{x}}} = \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left\{\left(\mathrm{1}+\left(\mathrm{sin}\:{x}−\mathrm{1}\right)\right)^{\frac{\mathrm{1}}{\mathrm{sin}\:{x}−\mathrm{1}}} \right\}^{\frac{\mathrm{sin}\:{x}−\mathrm{1}}{{x}}} \\ $$$$=\:{e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\frac{\mathrm{sin}\:{x}−\mathrm{1}}{{x}}\right]} ={e}^{−\infty} =\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{g}\left({x}\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}}\right)^{\mathrm{sin}\:{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\left(\frac{\mathrm{1}−{x}}{{x}}\right)\right)^{\mathrm{sin}\:{x}} \\ $$$$={e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{sin}\:{x}\right)} =\:{e}^{\mathrm{0}} \:=\:\mathrm{1} \\ $$$${therefore}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\left(\mathrm{sin}\:{x}\right)^{\frac{\mathrm{1}}{{x}}} +\left(\frac{\mathrm{1}}{{x}}\right)^{\mathrm{sin}\:{x}} \right]\:=\:\mathrm{1} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com