Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79607 by sou99 last updated on 26/Jan/20

Solve this  ∫_ (((x−yz))/((x^2 +y^2 −2xyz)^(3/2) ))dz

$${Solve}\:{this} \\ $$$$\int_{} \frac{\left({x}−{yz}\right)}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xyz}\right)^{\mathrm{3}/\mathrm{2}} }{dz} \\ $$$$ \\ $$$$ \\ $$

Commented by MJS last updated on 26/Jan/20

∫((a+bt)/((c+dt)^(3/2) ))dt=       [u=c+dt → dt=(du/d)]  =(b/d^2 )∫(du/u^(1/2) )+((ad−bc)/d^2 )∫(du/u^(3/2) )=  =((2b)/d^2 )u^(1/2) −((2(ad−bc))/d^2 )u^(−1/2) =  =((2(bu−ad+bc))/d^2 (√u))=((2(bdt−ad+2bc))/d^2 (√(c+dt)))=  now put  a=x, b=−y, c=x^2 +y^2 , d=−2xy, t=z  =(((xz−y))/(x^2 (√(x^2 +y^2 −2xyz))))+C

$$\int\frac{{a}+{bt}}{\left({c}+{dt}\right)^{\mathrm{3}/\mathrm{2}} }{dt}= \\ $$$$\:\:\:\:\:\left[{u}={c}+{dt}\:\rightarrow\:{dt}=\frac{{du}}{{d}}\right] \\ $$$$=\frac{{b}}{{d}^{\mathrm{2}} }\int\frac{{du}}{{u}^{\mathrm{1}/\mathrm{2}} }+\frac{{ad}−{bc}}{{d}^{\mathrm{2}} }\int\frac{{du}}{{u}^{\mathrm{3}/\mathrm{2}} }= \\ $$$$=\frac{\mathrm{2}{b}}{{d}^{\mathrm{2}} }{u}^{\mathrm{1}/\mathrm{2}} −\frac{\mathrm{2}\left({ad}−{bc}\right)}{{d}^{\mathrm{2}} }{u}^{−\mathrm{1}/\mathrm{2}} = \\ $$$$=\frac{\mathrm{2}\left({bu}−{ad}+{bc}\right)}{{d}^{\mathrm{2}} \sqrt{{u}}}=\frac{\mathrm{2}\left({bdt}−{ad}+\mathrm{2}{bc}\right)}{{d}^{\mathrm{2}} \sqrt{{c}+{dt}}}= \\ $$$$\mathrm{now}\:\mathrm{put} \\ $$$${a}={x},\:{b}=−{y},\:{c}={x}^{\mathrm{2}} +{y}^{\mathrm{2}} ,\:{d}=−\mathrm{2}{xy},\:{t}={z} \\ $$$$=\frac{\left({xz}−{y}\right)}{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xyz}}}+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com