Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 80293 by ~blr237~ last updated on 01/Feb/20

Find all functions that  satisfy to    (E): ∀ x∈R      xf(x)+∫_0 ^x f(x−t)cos(2t)dt=sin(2x)

$${Find}\:{all}\:{functions}\:{that}\:\:{satisfy}\:{to}\:\: \\ $$$$\left({E}\right):\:\forall\:{x}\in\mathbb{R}\:\:\:\:\:\:{xf}\left({x}\right)+\int_{\mathrm{0}} ^{{x}} {f}\left({x}−{t}\right){cos}\left(\mathrm{2}{t}\right){dt}={sin}\left(\mathrm{2}{x}\right) \\ $$$$\: \\ $$

Commented by john santu last updated on 02/Feb/20

2y+xy′ = 2cos 2x ⇒ differential  equation

$$\mathrm{2}{y}+{xy}'\:=\:\mathrm{2cos}\:\mathrm{2}{x}\:\Rightarrow\:{differential} \\ $$$${equation} \\ $$

Commented by ~blr237~ last updated on 02/Feb/20

just check your mistake on the (3−4)lines  crossing

$${just}\:{check}\:{your}\:{mistake}\:{on}\:{the}\:\left(\mathrm{3}−\mathrm{4}\right){lines}\:\:{crossing} \\ $$

Commented by john santu last updated on 02/Feb/20

(d/dx)[∫_0 ^x f(u)cos (x−u)du]=  f(x)cos (x)+f(0) cos (0) ?

$$\frac{{d}}{{dx}}\left[\underset{\mathrm{0}} {\overset{{x}} {\int}}{f}\left({u}\right)\mathrm{cos}\:\left({x}−{u}\right){du}\right]= \\ $$$${f}\left({x}\right)\mathrm{cos}\:\left({x}\right)+{f}\left(\mathrm{0}\right)\:\mathrm{cos}\:\left(\mathrm{0}\right)\:? \\ $$

Commented by ~blr237~ last updated on 02/Feb/20

No

$${No}\:\: \\ $$

Commented by jagoll last updated on 02/Feb/20

what the right?

$${what}\:{the}\:{right}? \\ $$

Commented by ~blr237~ last updated on 02/Feb/20

like that....?what is not valid? be clear?

$${like}\:{that}....?{what}\:{is}\:{not}\:{valid}?\:{be}\:{clear}?\: \\ $$

Commented by jagoll last updated on 02/Feb/20

we know that  ∫_a ^x  f(u)du ⇒ (d/dx) ∫_a ^x f(u)du= f(x)  it clear by fundamental  calculus 1.   so (d/dx)∫_1 ^( x) f(u)cos (x−u)du =   f(x) cos (x−x) = f(x)

$${we}\:{know}\:{that} \\ $$$$\int_{{a}} ^{{x}} \:{f}\left({u}\right){du}\:\Rightarrow\:\frac{{d}}{{dx}}\:\int_{{a}} ^{{x}} {f}\left({u}\right){du}=\:{f}\left({x}\right) \\ $$$${it}\:{clear}\:{by}\:{fundamental} \\ $$$${calculus}\:\mathrm{1}.\: \\ $$$${so}\:\frac{{d}}{{dx}}\int_{\mathrm{1}} ^{\:{x}} {f}\left({u}\right)\mathrm{cos}\:\left({x}−{u}\right){du}\:=\: \\ $$$${f}\left({x}\right)\:\mathrm{cos}\:\left({x}−{x}\right)\:=\:{f}\left({x}\right) \\ $$$$ \\ $$

Commented by ~blr237~ last updated on 02/Feb/20

sir what is going  on?   let take f(t)=t  F(x)=∫_0 ^x (x−t)cos2tdt         by part   u′=cos2t  and v=x−t  F(x)=[(1/2)(x−t)sin2t]_0 ^x  +(1/2)∫_0 ^x sin2tdt    =(1/2)[((−cos2t)/2)]_0 ^x =((1−cos2x)/4)  (dF/dx)=((sin2x)/2) ≠ f(x)=x

$${sir}\:{what}\:{is}\:{going}\:\:{on}? \\ $$$$\:{let}\:{take}\:{f}\left({t}\right)={t} \\ $$$${F}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \left({x}−{t}\right){cos}\mathrm{2}{tdt} \\ $$$$\:\:\:\:\:\:\:{by}\:{part}\:\:\:{u}'={cos}\mathrm{2}{t}\:\:{and}\:{v}={x}−{t} \\ $$$${F}\left({x}\right)=\left[\frac{\mathrm{1}}{\mathrm{2}}\left({x}−{t}\right){sin}\mathrm{2}{t}\right]_{\mathrm{0}} ^{{x}} \:+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{{x}} {sin}\mathrm{2}{tdt} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{−{cos}\mathrm{2}{t}}{\mathrm{2}}\right]_{\mathrm{0}} ^{{x}} =\frac{\mathrm{1}−{cos}\mathrm{2}{x}}{\mathrm{4}} \\ $$$$\frac{{dF}}{{dx}}=\frac{{sin}\mathrm{2}{x}}{\mathrm{2}}\:\neq\:{f}\left({x}\right)={x} \\ $$

Commented by jagoll last updated on 02/Feb/20

okay sir

$${okay}\:{sir} \\ $$

Commented by ~blr237~ last updated on 02/Feb/20

When you want to derivate F(x)=∫_0 ^(u(x))  f(x,t)dt make  sure firstly (by a good stating variable: may be  z=(t/(u(x)))  ) to remove x at the whole boundary  we were having  F(x)=∫_0 ^x f(x−t)cos2tdt  F(x)=∫_0 ^1 x[f(x−xv)cos(2xv)]dv   with  v=(t/x)   Now you can use  (dF/dx)=∫_0 ^1 (∂/∂x) g(x,v)dv       where  g(x,v)=xf(x−xv)cos(2xv)

$${When}\:{you}\:{want}\:{to}\:{derivate}\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{{u}\left({x}\right)} \:{f}\left({x},{t}\right){dt}\:{make} \\ $$$${sure}\:{firstly}\:\left({by}\:{a}\:{good}\:{stating}\:{variable}:\:{may}\:{be}\:\:{z}=\frac{{t}}{{u}\left({x}\right)}\:\:\right)\:{to}\:{remove}\:{x}\:{at}\:{the}\:{whole}\:{boundary} \\ $$$${we}\:{were}\:{having}\:\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} {f}\left({x}−{t}\right){cos}\mathrm{2}{tdt} \\ $$$${F}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left[{f}\left({x}−{xv}\right){cos}\left(\mathrm{2}{xv}\right)\right]{dv}\:\:\:{with}\:\:{v}=\frac{{t}}{{x}}\: \\ $$$${Now}\:{you}\:{can}\:{use}\:\:\frac{{dF}}{{dx}}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\partial}{\partial{x}}\:{g}\left({x},{v}\right){dv}\:\:\:\:\:\:\:{where}\:\:{g}\left({x},{v}\right)={xf}\left({x}−{xv}\right){cos}\left(\mathrm{2}{xv}\right) \\ $$

Commented by mr W last updated on 02/Feb/20

to jagoll sir:  ∫_a ^x  f(u)du ⇒ (d/dx) ∫_a ^x f(u)du= f(x)  is correct. but it can not be applied to  ∫_a ^x  f(u,x)du ⇒ (d/dx) ∫_a ^x f(u,x)du≠ f(x,x)

$${to}\:{jagoll}\:{sir}: \\ $$$$\int_{{a}} ^{{x}} \:{f}\left({u}\right){du}\:\Rightarrow\:\frac{{d}}{{dx}}\:\int_{{a}} ^{{x}} {f}\left({u}\right){du}=\:{f}\left({x}\right) \\ $$$${is}\:{correct}.\:{but}\:{it}\:{can}\:{not}\:{be}\:{applied}\:{to} \\ $$$$\int_{{a}} ^{{x}} \:{f}\left({u},{x}\right){du}\:\Rightarrow\:\frac{{d}}{{dx}}\:\int_{{a}} ^{{x}} {f}\left({u},{x}\right){du}\neq\:{f}\left({x},{x}\right) \\ $$

Commented by mr W last updated on 02/Feb/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com